初三数学质量分析报告

2024-07-16 17:43:00 来源 : haohaofanwen.com 投稿人 : admin

下面是好好范文网小编收集整理的初三数学质量分析报告,仅供参考,欢迎大家阅读!

初三数学质量分析报告

无论是在学校还是在社会中,我们都离不开试卷,试卷是纸张答题,在纸张有考试组织者检测考试者学习情况而设定在规定时间内完成的试卷。那么你知道什么样的试卷才能有效帮助到我们吗?

初三数学期中质量分析 1

上个星期我们进行了期中考试,在这我就我们学校八年级(4)班数学考试试题和学生的答题情况以及以后的教学方向分析如下:

一、学生情况

这次考试应参加43人,实参加43人。期中满分1人,及格35人,总分为4922分,平均分为114.47分,合格率为81.40%,优良率为48.84%。

二、试题特点

试卷包括选择题、填空题、作图题、解答题四个大题,共150分,以基础知识为主。对于整套试题来说,容易题约占90%、中档题约占10%,主要考查了八年级上册第十一章《三角形》、第十二章《全等三角形》、第十三章《轴对称》。这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

三、试题分析和学生做题情况分析

1、选择题:相当不错,看似简单的问题,要做对却需要足够的细心,含盖的知识面广。主要考察了学生对基础知识的运用,但很多学生都掌握不好,在做题时部分同学不能灵活的运用所学的知识解决

问题,以后要注意基础知识的掌握和灵活应用。如第9题考查了全等三角形的知识,学生出错率较高。

2、填空:总共8小题。第13、14、15、16题是考察学生对全等三角形性质的掌握情况,这题的得分率较高。第18题主要考察了三角形外角与内角的关系,告诉了三个内角的比,问相应的.外角的比试多少?很多学生没有注意到这一点,出错率很大。

3、作图题:题目要求用尺规作图,不写作法,但做完题必需要有文字说明,有部分同学没有说明,还有一部分同学没有搞清楚角平分线到底是线段、射线、还是直线,所以学生出错率较高。

4、解答题:总共6小题,总分70分。第一题计算,考察了学生对三角形内角和定理等知识的掌握。其余五个题考察学生对全等三角形的性质、判定、三角形的等角对等边和等边对等角的性质等几何知识的掌握。这块学生失分率较高,主要是:其一,学生刚接触证明题,比较生疏,无从下手,不知从哪分析起。其二,学生书写的格式不规范,不懂地利用几何语言来表述。

四、今后的教学注意事项:

通过这次考试学生的答题情况来看,我认为在以后的教学中应从以下几个方面进行改进:

1、立足教材,教材是我们教学之本,在教学中,我们一定要扎扎实实地给学生渗透教材的重难点内容。不能忽视自认为是简单的或是无关紧要的知识。

2、教学中要重在突显学生的学习过程,培养学生的分析能力。在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。尤其是在几何题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程,强化学生的书写格式。

3、关注生活,培养实践能力加强教学内容和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的能力。

4、关注过程,引导探究创新,数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的能力。

初三数学期中质量分析 2

九年级数学试卷是一份知识覆盖面广、基础性和创造性都强的试卷。它集检测反馈与训练提高于一体,对实践新课标具有必须的指导好处。

一、基本状况

(一)考生答卷基本状况

本次考试,根据抽样卷统计,得分状况是:人平分79。8分;及格率94%;优秀率38%;多数得分在70分―85分之间,各试题的得分状况如下表:

题号1、2、3、4、5、6、7、8、9、10

得分率98%、98%、98%、86%、70%、41%、88%、98%、60%、76%。

题号11、12、13、14、15、16、17(1)、17(2)、18(1)、18(2)

得分率82%、100%、62%、85%、50%、95%、96%、80%、96%、84%。

题号19(1)、19(2)、20、21、22、23、24、25、26、27

得分率98%、94%、89%、96%、61%、52%、86%、81%、42%、62%。

(二)知识分布

第二章有理数(14分):其中填空题第1、2、3题,共4分;选取题第13、8题,共2分;计算或化简第17(1)、(2)题,共8分。

第三章用字母表示数(19分):其中填空题第4、5、6题,共5分;计算或化简:第17(3)、(4)题,共8分;解答题:第26题,共6分。

第四章一元一次方程(19分):选取题第1题,共2分;简答题第19(1)、(2)题,第24题,共17分。

第五章走进图形世界(14分):选取题第12题,共2分;简答题第21、25题,共12分。

第六章平面图形的认识(34分):填空题第7、8、9、10题,共6分;选取题第14、15、16题,共6分;解答题第20、22、23、27题共22分。

二、试卷特点

1、公正性和导向性并举。

试卷中第17题选自课本71页第8题(1)、(2),试卷中第18题选自课本108页第6题(5),试卷中第20题选自课本199页第3题,试卷中第21题选自课本169页“试一试”第3题改编;试卷中第22题选自课本212第11题改编。以上各题共占37分。这样考查,体现了考试的公正性和导向性。

2、基础性与创新性兼顾。

前面填空题和选取题主要考查学生对“双基”的掌握,难度不大,这体现了数学要面向全体学生,解答题第17、18、19小题,是计算,主要考查学生对运算的掌握,因为准确迅速的计算是数学学科的基石。解答题第24、26小题都是与现实生活有关的题目,这充分体现了“人人要学有用的数学,数学问题是源于现实生活”的理念。填空题第9小题是用地理知识结合数学知识考查学生对数学理解的潜力。这就体现了学科之间的相互渗透,使人有一种耳目一新之感。全套试卷易中有难,充分到达了通过考试来评价的目的。

三、考生答题错误分析

1、对基础知识(主要是计算)的`运用不够熟练。

2、学生审题不清导致出错。

3、某些思考和推理过程,过程过于简单,书写不够严谨。

4、对于知识的迁移不能正确把握,也就是不能正确使用所学的知识。

四、考试后的一点思考

通过这次考试,重视重视基础知识和基本技能的优良传统要发扬,在以后的教学中,我们应落实“双基”和培养“三个潜力”,使学生普遍具有较扎实的基本功。素质教育是重基础的教育,越是科技突飞猛进,越是要重视基础,基础中所体现的思想具有根本的重要性,从中学会的方法和思想使人的潜力具有迁移性。人的创新精神、实践潜力离不开过硬的基础知识。在教学中应体现基础性、普及性和发展性,使数学教育面向全体学生,使每个同学都学到有价值的数学,每个都获得必要的数学,不同的学生在数学上得到不同的发展,让学生“有所收获”。

本次期末调研考试数学试题是“稳中求活”。新课标中新的教育理念有充分的体现,本次考试既考查了学生对基础知识、基本技能和概念掌握状况,又考查了学生运用知识解决实际生活问题的潜力,同时培养了学生的创新意识和实践潜力,确实是一份好试卷。

初三数学期中质量分析 3

教师如果想要提高学生的成绩的话,首先要注重自己的教学方法,然后改善自己不好的地方。平常能够多分析一下学生的学习状况,每次考完试后能够对试卷进行分析。这天小编总结整理了一篇最新的数学试卷分析报告范文,各位有需要的读者能够学习观摩一下。

上个星期我们进行了期中考试,接下来我就我们学校数学考试试题和学生的答题状况以及以后的教学方向分析如下。

一、试题特点

试卷包括填空题、选取题、解答题三个大题,共120分,以基础知识为主。对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%、,主要考查了七年级下册第六章《一元一次方程》第七章《二元一次方程组》以及第八章《不等式》。这次数学试卷检测的范围就应说资料全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握状况。

无论是试题的类型,还是试题的`表达方式,都能够看出出卷老师的别具匠心的独到的眼光。试卷能从检测学生的学习潜力入手,细致、灵活地来抽测每章的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

二、学生问题分析

根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题

①数学联系生活的潜力稍欠。数学知识来源于生活,同时也服务于生活,但学生根据要求举生活实例潜力稍欠,如选取题第10小题,学生因对“用自己的零花钱去买东西”理解不透,从而得分率不高。

②基本计算潜力有待提高。计算潜力的强弱对数学答题来说,有着举足轻重的地位。计算潜力强就等于成功了一半,如解答题的第19题解方程(组),学生在计算的过程中都出现不少错误。

③数学思维潜力差这些问题主要表此刻填空题的第13题,第15题,第16题和解答题的21题,第23题。

④审题潜力及解题的综合潜力不强。审题在答题中比较关键,如果对题目审得清楚,从某种程度上能够说此题已做对一半,数学不仅仅是一门科学,也是一种语言,在解题过程中,不仅仅要要求学生学会如何解决问题,还务必要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达,也就是要有清晰的解题过程。

三、今后的教学注意事项:

通过这次考试学生的答题状况来看,我认为在以后的教学中应从以下几个方面进行改善:

1、立足教材,教材是我们教学之本,在教学中,我们必须要扎扎实实地给学生渗透教材的重难点资料。不能忽视自认为是简单的或是无关紧要的知识。

2、教学中要重在突显学生的学习过程,培养学生的分析潜力。在平时的教学中,作为教师应尽可能地为学生带给学习材料,创造自主学习的机会。尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。

3、多做多练,切实培养学生的计算潜力。有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。

4、关注生活,培养实践潜力加强教学资料和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的潜力。

5、关注过程,引导探究创新,数学教学不仅仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的潜力。

初三数学期中质量分析 4

一、考试情况分析

五年级两个班共有82名学生参加了此次测试,我班41人,总分是3108分,平均分是75、8分;及格率为80、49%,优秀率为46、34%。

二、学生卷面分析:

1、基础知识的掌握、基本技能的形成较好。

2、综合运用知识的能力较弱。表现在学生选择题、应用题。

3、没有形成良好的学习习惯。表现在稍复杂的数据和文字都会对一些能力较弱或习惯较差的学生造成一定的影响。如,卷面上有不少单纯的计算错误、抄错数据、漏小数点、漏做题等低级错误。

三、试卷卷面情况分析:

一题:共12道填空,每空1分。1、2、3、4、5、6、10小题得分率80%,错的同学多数是不细心造成。7、8、9、11小题失分率为90%原因有二:一是数量关系弄不清楚,二是对知识的综合运用能力差。第12小题,学生没有根据生活的实际需要取值,大部分学生是利用四舍五入的方法取值,

二题:共5道判断题,每题1分,错的较多的是2、3小题。原因是2小题也是观察物体的空间思维较差。3小题概念理解不清。

三题:选择题5道,还比较理想。

四题:共4道小题,包括直接写得数、竖式计算、简算、其中直接写得数错误较少。在竖式计算中失分原因主要属于粗心,笔误。如:计算小数点点错:0.68×0.82错算成5.776

五题:共6道小题,每题5分,主要考察学生是否思路清晰,能否准确地进行解答。特别是考察学生对应用题的审题能力。这部分的得分率低于其它部分,能拿到满分的学生不多。第2小题失分率50%,原因题意弄不清楚。

四、反思及改进措施:

1、教学中注重创设问题情境,提高学生解决问题的策略意识的.培养。

2、精用教材,因人而教,做好各层次的课前、课中、课后的辅导。

3、激发学生学习兴趣,注重培养学生良好的学习习惯。

4、坚持认真写好教学反思。自我反思是教师专业成长的必由之路。经常对自己教学中的得与失进行自我反思,分析失败的原因,寻求改进的措施和对策,总结成功的经验,以求更快地提高自身课堂教学的素质和水平。

初三数学期中质量分析 5

一、总体评价

本次八年级数学试题能紧扣教材,注重双基,突出了教材的重难点,难度适中,分值分配合理,题型与中考题型接轨。试题立意鲜明,取材新颖,设计巧妙,贴近学生实际,突出试题的开放性,整套试卷充分体现课改思想理念。通过考试,考生不仅长了见识,也找到了自信。

二、试题结构及特点

1、试题结构

本套试题满分100分,共三道大题27道小题,其中客观性题占60分,主观题占40分。

2、试题特点

(1)试卷主要考查学生对初中数学基础知识的掌握情况,题量适中,从时间上保证了考生精心思考、认真答卷;从试题内容上看,分值比较合理,各知识点均有体现;再从命题角度看,试题材料鲜活,结合实际生活,立足紧扣学生脉搏,体现数学来源于生活,服务于生活。

(2)注重灵活运用知识和探求能力的考查

试卷积极创新思维,重视开放性、探索性试题的设计;第5、9、10题等具有开放性、探索性,有利于考查不同层次的学生的分析、探求、解决问题的能力。第12、13、25题考查学生灵活运用知识与方法的能力。

三、试题做答情况

试题在设计上注意了保持一定的梯度,不是在最后一题难度加大,而是注意了难度分散的命题思想,使每个学生在每道题中都能感到张弛有度。

结合试卷作答深究原因主要反映出教学中的以下问题:

1、学生审题不清导致失分;

2、对题意理解偏差造成错误;

3、数学基本功不够扎实。

四、教学启示与建议

通过以上分析,在今后的教学中应注意切实加强以下三个方面。

1、面向全体,夯实基础

正确理解新课标下“双基”的含义,数学教学中应重视基本概念、基本图形、基本思想方法的教学和基本运算及分析、解决问题等能力的`培养。要面向全体学生,做到用教材教,而不是教教材,以教材的例题、习题为素材,结合学生实际,举一反三加以推敲、延伸和适当变形,以达到“人人掌握必须的数学”,同时关心数学学习困难的学生,通过学习兴趣培养、学习方法指导,使他们达到学习的基本要求,使不同的`学生得到不同的发展。

2、注重应用,培养能力

在教学中应关注社会生活,注重情感培育,引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新能力的培养,激发学生的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性的解决问题,也要设计一定数量的开放性、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些问题进行探讨。

3、关注本质,指导教学

近几年的中考中有不少试题体现了数学应用思想、实践与操作、过程与方法,探究学习等新课程理念,因此,在教学中应以新课程理念为指导,重视学生动手实践、自主探索和合作交流等教学方式的运用,在教师启发引导的基础上,留给学生一定的时间和空间。合作探究学习中,要让学生充分表达自己的思想,引导学生讨论、自主反思、归纳小结活动中隐含的或发现的数学规律,让学生真正体验和经历数学知识的变化及构建生成过程。

初三数学期中质量分析 6

一、试卷评阅的总体状况

本学期文科类数学期末考试仍按现用全国五年制高等职业教育公共课《应用数学基础》教学,和省校下发的统一教学要求和复习指导可依据进行命题。经过阅卷后的质量分析,全省各教学点汇总,卷面及格率到达了54%,平均分54.1分,较前学期有很大的提高,答卷还出现了不少高分的学生,这与各教学点在师生的共同努力和省校统一的教学指导和管理是分不开的。为进一步加强教学管理,总结各教学点的教学经验不断提高教学质量,现将本学期卷面考试的质量分析,发给各教学点,望各教学点以教研活动的方式,开展讨论、分析、总结教学,确保教学质量的稳步提高。

二、考试命题分析

1、命题的基本思想和命题原则命题与教材和教学要求为依据,紧扣教材第五章平面向量;第七章空间图形;第八章直线与二次曲线的各知识点,同时注意到我省的教学实际学和学生的认识规律,注重与后继课程的教学相衔接。以各章的应知、应会的资料为重点,立足于基础概念、基本运算、基础知识和应用潜力的考查。试卷整体的难易适中。

2、评分原则评分总体上坚持宽严适度的原则,客观性试题是填空及单项选取,这部分试题条案是唯一的,得分统一。避免评分误差。主观性试题的评分原则是,以知识点、确题的基本思路和关键步骤为依据,分步评分,不重复扣分、最后累积得分。

三、试卷命题质量分析

以平面向量、直线与二次线为重点,占总分的70%、左右,空间图形约占30%左右,基础知识覆盖面约占90%以上。试题容量填空题13题,20空,单选题6题,解答题三大题共8小题。两小时内解答各题容量是足够的,知识点的容量也较充分。平面向量考查基本概念,向量的两种表示方法,向量的线性运算,向量的数量积的两种表示形式,与非零向量的共线条件,两向量垂直与两向量数量积之间的关系,试题分数约占35%左右。直线与二次曲线考查,曲线与方程关系,各种直线方程及应用,二次曲线的标准方程及一般方程的应用,方程中参数的求解,各几何要素的确定,试题分数约占35%左右。空间图形着重考查平面的基本性质、两线的位置关系、两面的位置关系、线面的位置关系、三垂线定理的应用、异面直线所成的角、线面所成的角、距离计算等问题。表面积和体积的计算,为减轻学生负担末列入试题中(但复习中仍要求应用表面积和体积公式),该部份试题分数约占30%。三章考查重点放在平面向量、直线和二次曲线,其次是空间图形部份。故考查的主次是分明的,贴合高职公共课教学大纲的要求。

四、学生答卷质量分析

填空题:

第1至3题考查向量的线性运算和位置向量的坐标线性运算,答对率约85%、左右,其中大部份学生对书写向量遗漏箭头,部分学生将第3题的答案(―9,3)答成(9,―3)或(―9,―3)等。符号是不清楚的,反映出部份学生对向量的线性运算并非完全掌握。第4~7题涉及立体几何问题,主要考查线面关系,面面关系。答对率70%、左右,其它学生主要是空间概念不清,不能确定线面间、平面间的位置关系。

多数对异面直线的位置关系不清楚。第8~13题涉及解析几何的问题,考查曲线方程中的待定系数,直线方程,点到直线的距离问题,状况尚好,答对率70%左右。第11~13题反而答错率占65%左右,主要反映出学生对各种二次曲线的标准方程混淆不清,对几何要素的位置掌握不好,突出表此刻对二次曲线的几何性质掌握较差,不牢固。

单项选取题:

学生一般得分为12―18分第1题选对的占80%以上,学生对平面的基本性质中的公理及推论掌握较好。第2题选对的占70%左右,学生对两向量垂直与两向量数量积之间的关系掌握较好。答错较多的是第4和第6题,其次是第5题。第5题多数错选(a)或(b),可见学生对一般圆方程用公式求圆心和半径不熟悉,同时用配方法化圆的.一般方程为圆的标准方程,求圆心和半径也掌握不好。特别是第4题平行坐标轴,坐标变换竟有

33%的学生错选(b)或不选(空白),可见不少学生对坐标轴平移引起坐标变换的新概念并不清楚,对新、旧坐标的概念也不清楚。第6题不少学生错选(b),反映出学生对向量平行和垂直的条件混淆,决定两向量相等的条件也不明确,才会出现如此的错误。

第三题:

(1)题是考查异面直线的成的角及长方体对角的计算。对本题的解答约80%的学生能找到异面直线a1c1与bc所成的角,但有30%、~40%的学生不习惯用反正切函数表示角度,反而用反正弦或反余弦函数表示角度,教学中应引起跑的重视。计算长方体的对角线长仅有20%的学生会用简捷方法“长方体的对角线的平方等于长、宽、高的平方和”。其余学生计算较繁琐。

(2)题是考查证明三点共线问题。约有80%的学生采用不同的方法证明,有用解析法的,也有用向量法的,也有用平面几何与解析几何综合知识证明的“三点连线中,两线之和等于第三线则三点共线”,反映出各教学点对该问题给出了多种证明法和思路,值得提倡。

第(3)题考查根据不同的己知条件选用向量数量积的表达式。

第四题:

1题主要考查动点的轨迹方程,学生的解答,多出现两种方法,按轨迹满足椭圆定义求解或按求轨迹方程的四大步骤求解,但解答中又出现不少错误。

第五题:

1题是考查由给定双曲线的条件求它的标准方程和渐近线方程,但不少学生将双曲线中的参数a,b与随圆中的参数a、b、c混为一谈,对渐逐近线方程掌握不好,不能根据渐逐线的位置,写出渐近线的方程。

2题主要考查用向量法证明四边形是矩形的方法,但不少学生随心所意,反而用解析几何的方法去证明,严格讲这是错误的,就应引起重视。有的学生在证明中逻辑混乱,逻辑推理叙述不严密,在矩形的证明中,用“垂直证明垂直”。对向量的知识掌握不牢固,求向量的坐标时,差值的顺序不对,导致计算错误。

第六题:

本题是一道立体几何题,主要考查的知识点一是两平面垂直的性质,二是直线与平面所成的角。本题评阅结果,有近60%的考生得满分,这些学生是掌握了考查的知识点,解题思路清晰,能迅速地用两平面垂直的性质,证明δabc和δbdc是直角三角形,求出bc和cd后,又用三角函数计算cd与平面所成的角。有的学生构造三角形思路灵活,连接ad得直角δabd,在此三角形中求出ad,又在直角δdac中求出cd,最后在直角δdbc中求出dc与平面所成的角,即∠dcb。在20%的学生错答的原因是找不准直角,把直角边当成斜边来计算,导致解答错误。有近20%的学生空间概念较差,交白卷,有的认为ab与cd是在一个平面上且相交,完全按平面几何的知识来解答本题,如用全等三角形和相似三角形的知识来解,这是完全没有空间概念的主要表现。

五、通过考试反馈的信息

对今后教学的推荐通过以上考试命题,试卷质量,答卷质量,基本概况的综合分析,实行统一命题,统一考试,统一阅卷是十分必要的。将考试成绩通报各教学点,对互通信息,相互学习,取长补短,努力改善教学方法,分析和探索初中起点五年制大专教育(高职)的教学规律,也是很有必要的。特别是通过考生的答卷分析,各教学点要开展教研活动,分析教学中的薄弱环节,采取有针对性的措施,不断的提高教学质量。

初三数学期中质量分析 7

期中考试已经落下帷幕,在这我就我们学校八年级数学考试试题和学生的答题情况以及以后的教学方向分析如下:

一、总体情况分析

本次考试共有参考人:537人;最高分:111分,最低分:0分;平均分:62.34;优秀率:19.45% 及格率:50.89% 。 一、试卷分析:

试卷包括选择题、填空题、解答题三个大题,共120分,对于整套试题来说,容易题较少、中档题较多。主要考查了八年级上册第十一章《三角形》、第十二章《全等三角形》、第十三章《轴对称图形》三章的知识点。这次数学试卷检测的范围应该说内容全面,注重基础知识、基本技能的检测,同时又有一定难度,能如实反映出学生数学知识的掌握情况。无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

二、试题分析和学生做题情况分析

1、选择题:共8题,24分。看似简单的问题,要做对却需要足够的细心,含盖的知识面广。主要考察了学生对基础知识的运用,但大部分得分在15―21分之间,错误较多的试题依次为3、6、8。错误原因是有的学生读不准题,有的学生计算不准,有的同学审题不清

楚,更多的是很多学生都掌握不好,在做题时不能灵活的运用所学的知识解决问题,导致失分,以后要注意基础知识的掌握和灵活应用。

2、填空:共10题,30分。大多得分18―27分,其中第14、16、17、18题失分较多,第14题学生不能充分挖掘使用题中的已知条件,第16题两个等边三角形的条件不会使用,不能灵活的找出全等的三角形全等,第17、18题考查了学生思维的多角度性和整合知识的能力,说明学生在这方面需加强。

3、解答题:总共七小题,总分66分。这七道题主要考察学生尺规作图、全等三角形的性质与判定、等腰三角形的性质、三角形的外角,最短路径和平面直角坐标系,轴对称,旋转,平行线的判定等知识。其中第19、20题针对全等三角形,等腰三角形等基础知识的考察,得分率较高;第21、24题考察有关平面直角坐标中图形面积,轴对称,点的坐标,其中21题较为简单,但由于学生粗心大意以及计算错误,得不全分的学生大有人在,第24题失分较多,平时旋转的题目接触较少,学生审题不准,思路混乱,不知从何下手,第二问将数字换成字母,思维转化较慢,有点不知所措。第22题,尺规作图和最短路径问题,第一问错误原因作图不规范,作图痕迹不明显,第二问,很多学生书写过程不规范,求最短周长时因果关系表述不清楚。第25题失分最为严重,考察角平分线,三角形外角之间的角的转换及角与边之间的关系,进而证明三角形全等,由三角形全等的性质证明两直线平行,失分主要有两个原因:其一,学生刚接触证明题,比较生疏,无从下手,不知从哪分析起。其二,学生书写的格式不规范,不懂地利用几何语言来表述。暴露出学生的基础知识掌握不牢,运用知识点十分不熟练,思维缺乏想象能力,缺乏灵活性,在运用知识解决问题上的能力不足。

三、存在问题

1、学生应用能力有待加强。

学生对知识的应用还只处于表面,不能灵活的应用。对于稍微有一点变化的题目就无法独立理解,思维出现混乱。

2、学生的学习兴趣有待提高。

后进生情况令人担忧,缺乏学习目的,学习的知识点非常容易遗忘,两级分化严重。

3、学生独立思考及解题能力有待提高。

由于在平时的'训练中,学生更多的是在教师读一道题,答一道题的情况下答试卷,学生还是不能适应独立审题、思考,应在以后的教学中提高学生独立审题、思考的能力。

四、改进措施:

1.进一步加强思想教育.八年级是学生数学学习分化加剧的关键期,每个班级中都存在着一定数量的差生,他们对学习数学缺少信心,厌学情绪较重,有的甚至放弃数学学习.鉴于此,我们有责任在数学教学中对学生加强思想教育,端正学生学习态度,让其明白八年级数学学习的重要性,充分调动他们学习数学的主动性和积极性。

2.重视双基训练.在教学中要始终注意对学生双基的训练.要把运算的准确性落在实处,把书写规范化的训练落在实处.在教学过程中强化几何训练、强化格式、知识点和思维。

3.教学中要重在突显学生的学习过程,培养学生的分析能力。在平时的教学中,应尽可能地为学生提供学习材料,创造自主学习的机会。尤其是在几何题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程,强化学生的书写格式。

4、精心备课,力求每一堂课新颖且有创新,努力改变以往沉闷、呆板的课堂气氛,力争使教学方法灵活多样,且有较强的教学效益,充分利用多媒体手段,调动学生学习的积极性和兴趣。

5、增加平时检测密度,多出好题、新题,拓广学生知识面,紧密联系生活实际,充分体现新课程的教学理念,力求使学生学习数学课生动有趣。

总之,在今后的教学过程中要以学生为重点,重在引导学生学会学习,提高学生的基础知识和基本技能,加强对学生课后学习和练习的监管和督促力度,加强学生分析问题的能力,培养其创新思维能力,为今后的学习数学打好基础。

初三数学期中质量分析 8

本次测试我们还是用漳州三中的考题。考试时间120分钟,满分140分,共26题,试题难易适中,知识点覆盖面大,注重考查基本知识和基本技能。偏重于考查学生几何推理证明计算,2、3、5、6、11、13、15、17、18、20、21、22、23、24、25、26共16道,取之于生活的应用性问题有2、4、11、13、15、16、22,题目入手宽泛,19题解方程并没有要求方法,学生可以发挥自己的优势,培养自信心。

学生做得较好的题目有填空题即918题、19,做得不好的有题目有:思考问题不够全面8题,忽略一元二次方程的条件,知识的综合运用问题:6、11、18、25,探究性问题26,数学应用问题16题将送贺卡与握手问题混淆,22题的.与利润问题相关的两个量的关系部分学生理解还有困难,在验根环节不注意审题以至于失分。

整体来说,明显的问题有:

1、 学生成绩呈现严重的两极分化现象,班级授课难度增大,学困生与同学们的差距越来越大,有的开始不遵守纪律,甚至影响到正常课堂教学秩序。

2、 成绩的背后反思学生的学习过程,不下功夫,所以随着学习任务的加重,再忽视课前预习,课堂学习的有效性削弱,由于懒惰作业不做,更不用说自觉温习功课了。一些中等生学习方法上还要改进,学习效率有待提高,否则不能适应高中数学的学习。

3、 一些基本概念如一元二次方程的条件,各种四边形的定义性质、和判定部分学生不能真正理解掌握,更谈不上灵活应用了。基本技能,比如尺规做图求做线段中点,一些好学生还不能很好解决,解一元二次方程时少数同学还有用大括号连接两个根,对于两个重根不能区别于一个实根进行书写。

4、 本次考试中大量的几何推理,不少是过去做过的老题,但是学生思维单一、烦琐、在自己的思维定势中打转转,不能简洁明了的说明问题。

5、 阅读理解题目的能力还有差距,灵活运用知识的能力不强。

今后的教学中要注意:

1、 我们毕竟是九年义务教育,还是要面向全体学生,善待学习中的弱势群体,对他们有期待,有要求,有约束,给予重视,定一些能够达到的目标,鼓励点滴进步,给予信心,课下多交流,给予关心。

2、 课堂教学还要注意学习方法的指导和引导,注意让学科尖子谈感想和学习秘诀,发挥引领和辐射作用。

3、 对优等生严格要求,让他们在反思自己,研究别人中认识自我,保持上进心,力争精益求精。

4、 不要忽视中等生这个群体,课堂教学多关注,多指导,给机会,给予帮助,使其产生向上的欲望的动力,从而提高成绩。

5、 在新课程的教学中多比较、多鉴别,加强知识网络构造的方法引导,要求解决问题与时俱进,鼓励通法多法,赞扬特法。利用课堂中的隐性教学资源:如巧解妙法,典型错误,学生提出的各种问题等,激发探究的欲望,给予探究的机会,搭建展示自我的舞台。

初三数学期中质量分析 9

这次期末考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习、

一、试卷的、整体分析:

试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢、注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势、

二、存在的主要问题:

1、缺少高分,优秀率低。

2、学生对基础知识掌握的不牢。知识不系统,综合能力应变能力较差,不能举一反三。

3、做题步骤不严密、解题不灵活,不注重方法和技巧。

三、典型错误:

1、解选择题第1题时由于不仔细部分学生忽略了分母不能为0。

2、解填空题第5题时考虑不全面,好多学生将C坐标找错。

3、填空题第8题扇形面积问题,忘记公式,不能正确理解出错率高。

4、填空题第10题,不会灵活应用树形图求概率,导致丢分。

5、第五题解方程,很多学生不能结合周长写出正确的解析式。

6、第六,七等题都是对圆的理解,部分学生出错率也较高。

7、解第八题时,错误也较多。

8、第九题求值,第三小题不会灵活运用韦达定理解题,出错率高。

四、今后工作思路

我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法、在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的.理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识、教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学素质、

这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题、重视培优,更应关注补差、课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程、课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展、

本试题总体感觉题量较大,题目偏难,简单题较少,难度与中考提相当。试卷所考查学生的知识点主要有十八大类,具有全面性、重复性、重点突出三大特点,同时与能力考查紧密结果,这就要求同学们在学习过程中首先一定要注重基本概念、基础知识,把根基打牢,然后就是要学会灵活运用,提高思维能力。每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就学生的答题情况做简单的分析:

从代数方面看,一元二次方程与反比例函数考察的题目比较多,也是本学期学习中的重点难点。这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。并注意归纳总结,努力发现它们之间的联系。

从几何方面,主要侧重考察相似三角形、解直角三角形和与圆有关的一些问题。与圆有关的问题涉及的知识面广,技巧性强,是学习中的重点跟难点。这要求同学们对基本概念熟练掌握,对基本技能熟练运用。只是死记硬背还不可以,同学们还要具备一定的抽象思维能力。在学习过程中多动动手,发挥空间想象。从试卷学生得分情况看

一、选择题:

学生出错较多的是8、12、15、16

第8题是关于三角函数的有关计算,部分学生没注意到点P所在的象限,有些同学看到3、4和6就想到了8,没有仔细审题。

第12题考察学生对反比例函数图像和性质的理解,分辨不清。

第15题考察了学生对圆周角和圆心角以及和他们所对的弧之间的关系,由于刚学过去对知识的理解不透彻。

第16题是关于圆锥侧面积的计算,扇形的面积和圆锥侧面积的转化学生理解不够,不能真正的理解和转化。

二、填空题:

得分率低,每个题的分量都不轻,考察了学生求平均数(17题)、数形结合的思想(18题)、反比例函数(19题)、圆的有关知识及勾股定理灵活运用(20题)。

三、解答题:

题目覆盖面较广,知识点较全,既有动手操作、又有动脑思考,既有形象思维(21、25),又有抽象理解(24、26函数问题。

最后的综合性问题,要求同学们对学过的知识能够融会贯通,具备发散思维的习惯,数形结合的去考虑问题,解决问题。

通过考试。我们发现了平时工作中的不足,有的题目应不惜多花费时间,让学生理解透彻,使模糊的'问题变得清楚明白,重点知识作到重点复习,达到提高成绩的目的。

反思一学期的教学总感到有许多的不足与思考。从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。

在平时的教学过程中,我们要求学生数学作业本必须及时上交,目的是为了及时发现,及时设法解决学生作业中存在的问题,认真落实订正的作用,将反馈与矫正要落到实处,切实抓好当天了解、当天解决、矫正到位,也就是说反馈要适时,矫正要到位。另外我们还应注意反馈来的信息是否真实,矫正的方法是否得力,因为反馈的信息虚假或不全真实,那么我们就发现不了问题,就不能全面地了解学生的情况,也就不会采取及时、正确的矫正措施。我认为要注意以下几个方面:

一、注意反馈矫正的及时性。

课堂教学中应注意引导学生上课集中精力,勤于思考,积极动口、动手。可利用提问或板演等多种方式得到学生的反馈信息,一般我们应把提问、解答、讲评、改错紧密的结合为一体,不要把讲评和改错拖得太长。最好当堂问题当堂解决,及时反馈在一日为好。

二、注意反馈矫正的准确性。

在教学中我们必须经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而尝到学习进步的甜头。

三、注意反馈矫正的灵活性。

我们在教学中可采用灵活多样的反馈矫正形式。咳提前设计矫正方案,也可预测学生容易出错的地方,在获取信息后,认真分析其问题的实质,产生问题的原因,然后有针对性地实施矫正方案。在作业的检查过程中,要求进一步落实学生是否存在抄作业现象,是否认真订正作业。总之,反馈矫正一定要落在实处。

我们要主动辅导,及时令其矫正。进一步培养学生的主动性和自觉性,当然,如果我们只强调学生的主动和自觉,而不注意自身的主动和自觉,结果也会不如人意。

总之,反馈与矫正在教学中总是循环往复的,不断加强反馈与矫正,对于我们的教与学生的学必将起到一定的推动作用。因此,我们在平时的教学中应注重反馈与矫正。


相关文章

    暂无相关信息
专题分类