光学行业前景(精密光学行业市场分析)
下面是好好范文网小编收集整理的光学行业前景(精密光学行业市场分析),仅供参考,欢迎大家阅读!
第一节 精密光学行业概况
根据中国光学光电子行业协会报告,光学产业链较长且涉及行业范围广泛。光学的上游主要为光学原材料制造,参与者主要为生产光学玻璃的材料企业。光学材料产业是整个光学产业的基础组成部分,已处于市场成熟阶段;中游为光学元件及其组件,是将光学玻璃通过加工、镀膜等工艺,生产成光学元件及镜头等产品的环节,可分为传统光学元件及组件、精密光学元件及组件;下游行业则主要包括消费电子、仪器仪表、半导体制造、车载镜头、激光器、光通信等行业,是光学元件的最终应用领域。
光学行业上游的光学材料是整个光学产业的基础和重要组成部分,光学玻璃在所有光学材料中用途最广且市场份额最大,2019年度光学材料30亿元左右的市场规模中,光学玻璃占据90%以上份额。光学玻璃经过多年的发展已经处于成熟期,全球的光学玻璃市场呈现产能过剩和竞争加剧的基本态势,市场需求增长不大。随着智能消费品产品不断升级,以及城市安防、汽车安全辅助、运动摄像等新兴市场的不断发展,高透过率、高均匀性、特殊性能的光学玻璃,以及红外材料、激光玻璃、光纤材料等高端光学材料的市场需求在不断增长,且精密压型光学产品的市场容量日益增大,已经形成了一定的产业规模。
光学行业中游的光学元件和组件,是将光学玻璃等材料通过冷加工、镀膜等工序生产成具有特定效果的光学元器件。其中,磨制成特定的光学镜片等元件的过程即为光学冷加工,冷加工的技术含量相对较低;为实现不同的功能,光学元件表面需要进行光学镀膜,这些薄膜赋予光学元件各种不同使用性能,在实现光学仪器的功能和影响光学仪器的质量方面起着重要或决定性的作用。中游产业链往下则是光学镜头,光学镜头的制造,涉及光学、机械、电子和软件等多个领域,属于高精密产品。在高分辨率定焦、大倍率变焦、超高清、光学防抖、安防监控一体机镜头等中高端光学镜头方面,参与者以舜宇光学、联合光电、宇瞳光学等为代表的国内上市企业为主。
光学行业下游领域方面,随着智能手机的爆发式发展和普及,智能手机用光学元件及镜头市场已成为整个光学领域市值最大、技术迭代快且频繁的领域,智能手机用光学元件及镜头占据整个光学市场份额超过70%,其次为安防监控镜头、车载镜头、机器视觉镜头等。近年来,随着前沿科技应用场景的不断成熟,以移动智能终端、物联网、云计算、生物识别技术、AR/VR、运动摄像等为代表的新兴市场的需求量持续增长,物联网、人工智能信息系统将视频图像信息作为重要的数据来源,为光学镜头使用场景带来了更大的市场空间。新一代信息技术为保证对信息数据运算的精度和效率,对光学镜头可靠性和成像质量提出更高的要求,促使镜头企业的技术加速升级。
我国的高端光学技术起步较晚,凭借近十几年的积累与进步,中国精密光学市场快速发展。根据中国光学光电子行业协会统计,目前我国大型精密光学企业聚焦于不同应用领域差异化竞争,并在各细分领域市场集中度较高。同时,由于消费级精密光学商业应用成熟,除消费级光学元件及镜头竞争较为激烈外,应用于高端装备制造、前沿科学研究、专业设备等领域的精密光学制造商,在各自技术优势的细分应用领域差异化竞争。例如,消费电子光学领域的蓝特光学、舜宇光学等,安防监控镜头领域的联合光电、福光股份、宇瞳光学等,专用精密光学镜头领域的福特科、永新光学等制造商。
第二节 精密光学市场情况
一、精密光学行业市场规模
自上世纪中期激光技术诞生以来,精密光学逐渐成为支撑21世纪高科技发展的核心技术之一。尤其是自上世纪90年代末数字化风潮席卷光电应用产品后,包括精密光学细分领域在内的光电行业迎来了发展机遇,精密光学应用行业范围也越来越广,各类影像输出、输入基本均要使用各式光学产品,为整个行业的长足发展奠定基础。
近年来,全球精密光学发展迅速,在工业测量、高端装备制造、激光雷达、航空航天、生命科学、智能设备、军事、科研等领域已被广泛应用。随着上述市场领域的快速发展,精密光学产品需求进一步增加,为世界精密光学行业发展提供了良好的市场前景。德国机械设备制造业联合会(Mechanical Engineering Industry Association,VDMA)发布的《Photonics in Germany 2019》数据显示,2017年全球精密光学产业市场规模约为5,300亿欧元,到2022年将达到8,000亿欧元。
自2000年以来,光学器件和光电应用产业步入了快速发展阶段。我国国家层面先后出台的鼓励政策及发展规划,将高精密光学器件加工提升到战略新兴技术层面,为行业提供了良好的发展环境。
与此同时,随着国际精密光学企业大量在中国设厂并与国内光学加工企业建立外协关系,国内优质精密光学企业抓住产业转移的机遇,向现代光学加工企业转型,逐步缩小了与国际先进水平的差距,出现了一批技术与装备较为先进、自动化程度较高、有较强的品质保证与过程控制能力、精密光学产品批量化生产水平具有国际市场竞争力的企业。
二、精密光学应用市场
随着现代科学技术的发展,精密光学逐渐向高精度发展,其应用范围也正变得日益广泛。传统光学主要应用于传统照相机、望远镜、显微镜等传统光学产品;消费级精密光学作为智能手机、安防监控摄像机、车载摄像机等产品的核心部件,成为影响终端产品应用效果的重要因素;而工业级精密光学则主要应用于多光谱相机、工业测量、激光雷达、航空航天、生命科学、半导体、无人驾驶、生物识别、AR/VR检测、军事、科研等国家重点发展的战略新兴领域,行业空间得到不断释放。
目前,越来越多的精密仪器运用了光机电相结合的新技术,推动了其实现了多功能、高性能和低成本的要求,促进了精密光学生产技术的发展及加工工艺的变革。此外,尖端科学技术领域特别是国防工业的技术进步对超精密光学产品提出了新的要求。例如,载人航天、激光武器的光学系统、光纤通讯元件、光集成电路中的微型光学器件,都属于超精密光学器件,其加工精度可达纳米级。
国务院《国家中长期科学和技术发展规划纲要(2006-2020年)》,确定了极大规模集成电路制造技术及成套工艺、大型飞机、载人航天与探月工程等十六个重大专项,这些重大专项是我国科技发展的重中之重。精密光学技术与产品面向科技前沿,作为重大技术装备的核心配套部件,在“极大规模集成电路制造技术及成套工艺”、“大型飞机”、“高分辨率对地观测系统”、“载人航天与探月工程”等国家科技重大专项中,光学系统都起到了关键性作用,为国家科技战略发展提供了重要支撑。
近年来,国内精密光学制造商日益重视技术革新和产品创新工作,不断提高自身产品设计、制造、检测等关键环节技术水平,较大提升了自身产品的品质和稳定性,从而提高了中国精密光学企业的全球竞争力。国内领先的精密光学企业经过持续研发积累,以优质的服务和成本优势,与欧美发达国家知名精密光学企业在高科技、高附加值的工业级精密光学领域展开竞争,国产化替代正在加速。
三、精密光学应用逐渐从消费级走向工业级
随着智能手机、平板电脑、数码相机等传统3C消费电子产品普及率的快速提升,其市场已逐渐成熟,形成了较为稳定的竞争格局。在此背景下,航空航天、生命科学、半导体、无人驾驶、生物识别、AR/VR检测等领域的发展对精密光学系统提出了更高要求,从而推动了应用领域逐渐从消费级向工业级迈进。例如,光学系统要传输更高能量密度的激光束,如惯性约束核聚变(ICF)系统和战术激光武器系统等;光学系统要接收和分辨更微弱的光能量,如深空探测系统和高分辨对地观测系统等;光学系统要在极紫外等光学波长的极限波段保持高分辨成像性能,如极紫外光刻系统等。
在科学界,精密光学制造技术正朝着人类制造能力极限迈进,世界各国通过实施各类大型光学工程发展科技、展现国力,助推先进制造、空间探测、航天事业等领域的发展。例如,在深空探测领域,航空器使用的大型口径光学器件在实现超大尺寸(超过1.5m)的同时,要满足轻量化和超精密的要求,包括λ/10面型精度和纳米量级表面粗糙度,涉及的材料包括熔石英、零膨胀玻璃及碳化硅等。在半导体领域,为了满足集成电路制造技术发展的要求,极紫外光刻正在成为世界多个国家发展的核心技术,对光学器件面型精度的要求达到λ/200,表面粗糙度低于0.1nm,这两项指标均达到甚至超过了当前光学制造技术的极限。
根据弗若斯特沙利文发布的《全球及中国精密光学市场独立行业研究报告》,近年来,受到生命科学、半导体以及生物识别等下游应用领域需求的驱动,工业级精密光学市场从2019年的110.6亿人民币上升到2021年的135.7亿人民币,年均复合增长率达到10.8%。作为当前科技发展的前沿阵地,半导体和生命科学在未来几年仍将吸引大量投入,对工业级精密光学产品的需求有望扩大。此外,在元宇宙、大数据、AI等技术概念的驱动下,加之人们生活与消费理念的持续升级,无人驾驶以及AR/VR等领域呈现爆发式发展的趋势,为工业级精密光学产品带来广阔的空间。预计全球工业级精密光学市场规模将从2022年的159.4亿人民币增长到2026年的267.6亿人民币,年均复合增长率为13.8%。
图表2:2019-2026年全球工业级精密光学市场规模
工业级精密光学设计能力和制造技术的提升是光学技术发展的必然要求,更是科技发展进步的重要基础。目前,我国正在经历经济和科学技术的快速发展期,我国有望抓住多项国家工程实施的有利时机,建立起具有自主知识产权的工业级精密光学制造技术的制造体系。
四、全球精密光学器件产业区域布局
当前,世界精密光学行业发展已较为成熟,逐渐形成了欧美、日本等发达国家主要从事光机电系统设计,中国等发展中国家偏重于光学器件、系统的制造的产业格局。从全球范围内看,世界精密光学产业主要集中在德国、日本、韩国和中国台湾等发达国家和地区。其中,德国、日本占据着全球精密光学技术的制高点,中国则逐渐成为世界精密光学产业的生产基地。
光学镜片和镜头的研究与制造在德国具有悠久的历史与传统,诞生了以莱卡(Leica)和卡尔•蔡司(Carl Zeiss)等为代表的世界精密光学巨头,尤其是蔡司镜头至今仍为世界镜头制造技术的典型代表。根据德国机械设备制造业联合会(VDMA)发布的数据,德国精密光学产业规模从2011年的270亿欧元增长至2018年的380亿欧元,年均增长5%。
日本精密光学工业自第二次世界大战之后进步迅速,其利用具有吸引力的性能价格比后来居上,在全球精密光学市场中逐渐占据优势,生产企业主要包括佳能(Canon)、尼康(Nikon)、富士(Fuji)、奥林巴斯(Olympus)、智能泰克(Chinontec)、关东辰美(Kantatsu)等。为进一步降低精密光学产品的制造成本,日本的光学技术逐渐向邻近国家和地区扩散,中国台湾、韩国以及中国大陆在精密光学领域的生产规模日益扩大,涌现出了像台湾亚洲光学、今国光学、大立光等一批具有世界先进水平的精密光学企业。
中国大陆正逐渐成为世界精密光学产业的生产基地。近年来,随着全球发达国家和地区光电产业结构调整的加快,全球精密光学制造正逐渐向中国大陆地区转移。目前,日本、韩国、中国台湾、美国和德国等国家和地区的知名精密光学企业均已在中国大陆设厂生产,市场竞争日趋激烈。此外,随着国内经济、技术水平的快速提升,各类电子设备制造产业体系逐渐趋于完善,对于精密光学的需求也与日俱增,中国内地正逐步成为世界精密光学的主要生产基地,在理论研究、技术创新、生产制造等方面也逐渐与全球领先企业缩小差距。
未来,全球光学光电子行业向中国大陆转移的趋势仍将延续,这在一定程度上为我国通过技术水平及产品附加值提升从而获得行业重新分工创造了机会,也有利于国内精密光学企业在较高层次上参与全球市场的竞争,为中国精密光学产业发展提供了良好的市场机遇。
第三节 精密光学行业技术水平及发展趋势
一、技术发展水平
目前,光学加工工艺主要包括切割、铣磨、精磨、抛光、磨边、胶合、镀膜等工艺环节。
超精密加工技术是先进装备制造的关键性瓶颈技术,纳米精度被誉为超精密加工技术“皇冠上的明珠”。超精密光学器件的制造体系,由超精密光学加工、超精密光学检测和超精密光学表面处理等环节构成。超精密光学器件的制造技术可以分为触式和非接触式两大类,在接触式制造技术中,最具代表性的方法是数控研磨抛光(CCP),单点金刚石切削(SPDT)以及磁流变抛光(MRF)技术。在非接触制造中,具有重要应用价值的方法包括磨料射流抛光(FJP)、等离子体成型(PACE)和离子束抛光(IBF)等技术。目前我国已初步建立了包括CCP、MRF、IBF、SPDT等技术在内的超精密光学制造技术体系。
超精密光学器件制造涉及的重要技术之一就是表面镀膜技术,通过镀膜以提高透反射、偏振及强激光耐受等能力。为此,需要积极发展新型的等离子体镀膜技术、离子束镀膜技术、激光束镀膜技术和平片的化学气相沉积技术,并积极研究新的薄膜材料与结构体系以及新的薄膜器件设计与检测技术。这些技术的发展对于提高和保障超精密光学器件的实际应用水平至关重要。
此外,随着制造能力的不断提升,超精密光学器件的检测技术问题已经逐渐成为限制制造技术发展的瓶颈。目前,超精密光学器件的检测主要指面型检测和粗糙度检测两个方面。面型检测主要使用轮廓仪和干涉仪,高精度轮廓检测和干涉检测设备几乎全部依赖进口,因而迫切需要通过自主研发或者技术引进等方式降低依赖性。
二、技术发展趋势
1、多学科的先进制造技术的融合发展
随着超精密光学器件精度的提高和规模化生产的发展,半导体加工等领域的先进制造技术不断融入光学加工技术中,使现代精密光学器件的加工技术、工艺、设备等较传统光学加工技术发生较大变化。目前,数控加工技术(CNC)、计算机辅助设计(CAD)、离子束辅助加工技术、磁控溅射成膜技术、高速精磨技术、抛光技术、磁流变抛光技术、精密切割技术等已经开始应用到光学器件加工的生产工序中,正在逐步取代应用了几十年的古典法抛光等传统加工工艺,大大提升了生产效率和品质保证能力,为光学器件加工进入规模化生产提供了可靠保障。
2、光学镀膜技术成为关键技术
由于现代精密光学器件向功能集成化和高精度方向发展,光学器件的分光光谱特性等只有依靠光学镀膜才可以实现。精密光学镀膜的偏振分光、减反射、光谱波长准确定位(通常在纳米级)等特性是目前其他任何技术无法替代的,所以光学镀膜技术是光学器件加工的关键技术。由于技术门槛较高,目前高效、高品质、低成本的批量化生产技术仍然只有少数光学加工企业掌握。应用于集成电路制造和半导体器件制造的溅射成膜技术、等离子体化学气相沉积技术逐渐用于光学镀膜,提升效率和良品率、降低成本效果明显,成为实现大批量生产超精密光学器件的重要技术。
3、检测技术自动化
激光平面干涉仪、球面干涉仪、高精度分光光度计、拼接式干涉测量设备等自动化检测仪器开始广泛进入光学器件加工现场,通过计算机和软件分析技术无接触式自动判断面形和加工精度,正在取代传统的用光学样板接触式检验并需要个人主观判断面形和加工精度的检测方法,不仅快捷方便、准确可靠,而且消除了检测过程中对零件表面的污染和损伤。
4、精磨、抛光高速化、自动化
精磨、抛光是光学器件加工的主要工序之一。现代精密光学器件加工技术采用金刚石丸片等固体磨料精磨,聚氨酯抛光片替代沥青柏油盘高速抛光,设备采用高速精磨、抛光,冷却液自动供给,压力通过气动阀自动控制,加工时间自动控制,不仅显著提升了加工效率和批量化生产的加工精度、质量,而且大大改善了加工环境、作业条件。同时,随着液流喷射抛光等新技术和新设备的涌现,光学器件的加工技术将会跃上一个新台阶。
第四节 精密光学行业面临的机遇与挑战
一、行业所面临的机遇
1、良好政策环境为精密光学发展提供有利保障
精密光学产品广泛应用于半导体(包括光刻机及半导体检测装备)、生命科学(包括基因测序及口腔扫描等)、航空航天、无人驾驶、生物识别、AR/VR检测等国家战略重点领域,近年来,国家陆续出台多项政策,持续引导和鼓励精密光学行业的发展。
例如,《“十三五”国家战略性新兴产业发展规划》明确提出,加快研制高功率光纤激光器、扫描振镜、动态聚焦镜及高性能电子枪等配套核心器件,提升软硬件协同创新能力。《“十三五”国家科技创新规划》提出,研制满足高速光通信设备所需的光电子集成器件;突破光电子器件制造的标准化难题和技术瓶颈,建立和发展光电子器件应用示范平台和支撑技术体系,推动我国信息光电子器件技术和集成电路设计达到国际先进水平。
2、科技创新引领产业升级,推动市场需求不断增加
精密光学行业是集光学设计、超精密加工、材料学、机构学、电子学等先进科技于一体的技术密集型产业。随着电子信息技术的日新月异,更新换代速度越来越快,光学产品精密度要求愈加提高,光学镜头及其模组等光学产品在各类高端产业应用中的重要性不断提升,市场需求将持续保持增长。同时受益于科技的快速发展和创新,精密光学产品可以更多地和电子通信产品相结合,创造更多的市场需求,带动精密光学行业的持续快速发展。
3、由消费级迈向工业级,精密光学应用领域逐步扩张
精密光学行业的发展受下游整机设备产品需求的变化而变化。近几年,随着智能手机、笔记本电脑、平板电脑等消费类电子产品普及率的快速提升,行业整体进入饱和期。与此同时,随着国家大力推进供给侧结构性改革,构建现代产业体系,提升创新能力,进一步发展壮大新一代信息技术、高端装备等战略性新兴产业,新兴领域需求的高速成长带动了精密光学产业的结构调整。
光电产业下游产品结构的调整带动了处于产业链中游的精密光学行业的转型发展,调整产品结构,向半导体(包括光刻机及半导体检测装备)、生命科学(包括基因测序及口腔扫描等)、航空航天、无人驾驶、生物识别、AR/VR检测等高端科技应用领域靠拢。未来,随着现代科技的发展,精密光学在该等领域的应用将朝纵深化发展,终端市场的需求增长亦将拉动精密光学行业产业链整体市场规模增长。
4、产业结构调整和转移带动我国精密光学产业发展
随着经济全球化和发达国家光电产业的结构调整加快,全球光学产业正逐渐向中国内地转移,德国、美国、日本、我国台湾地区的知名光学企业已在中国大陆设厂,带动了国内精密光学产业的发展。随着技术水平的不断提升,本土精密光学企业正在逐步追赶国际先进水平,出现了一批技术与装备先进、自动化程度较高、有较强的品质保证与过程控制能力、精密光学批量化生产水平具有国际市场竞争力的企业,能够立足全球精密光学产业平台并全面参与全球高端市场的竞争,为中国精密光学产业发展提供了良好的市场机遇。
二、行业所面临的挑战
1、核心设备依赖进口
精密光学行业是一个资金密集并融合了光学技术、机械技术和电子技术等诸多当代先进科技的技术引领型产业。一方面,精密光学行业对自动化精密生产、检测设备的投入要求较大;另一方面,精密光学行业的技术含量较高,核心工艺设备的先进水平直接影响产品质量和良品率高低,直接决定企业在市场竞争中的成本优势,并对产能规模提升形成制约。
长期以来,我国行业相关的关键制造、检测设备较为依赖进口,例如德国莱宝生产的镀膜机等,而国内生产的相关设备可靠性较低,从而给我国精密光学行业的发展带来了一定的挑战。
2、高端人才短缺
精密光学行业在方案设计环节需要系统利用光学设计、机械设计、电子控制、软件设计和精密加工等诸多技术;生产组装环节对部件加工精度、组装精度、自动化设备及工具都有严格的标准和规范,同时还需要生产厂商具备精益求精的工艺,以严格管控机电配合、零件加工精度、组装偏芯、零件内部应力、镜片间隙及零件热胀冷缩;检验环节则通常需要超高精度加工检测设备,以及经验丰富、功底深厚的专家团队。因此,精密光学行业对于多学科复合型人才、经验丰富的技术工程人员的要求较高。但是目前,我国劳动力供求的结构性矛盾突出,能满足精密光学行业需要的高端技术人才较为短缺,成为业内企业规模扩张的重要挑战。