分子影像学:前沿技术及应用研究

2024-01-22 19:37:00 来源 : haohaofanwen.com 投稿人 : admin

下面是好好范文网小编收集整理的分子影像学:前沿技术及应用研究,仅供参考,欢迎大家阅读!

分子影像学

摘要:近年来,随着纳米生物医学的进步和光学成像技术的兴起,分子影像学呈现出与材料学、化学、医用物理学、生物医学工程和基因组学等多个学科紧密融合的发展态势,基于纳米技术的新型分子显像剂迅速发展,以小分子、肽、抗体和适体修饰的纳米粒子已广泛应用于临床前研究和临床转化,分子影像技术在临床诊疗中有重大突破并取得一系列研究成果。多模态分子成像技术在精准诊疗中崭露头角,新一轮成像技术的升级能获取更多组织和分子层面的信息,进一步促进学科之间的交叉融合。本文着重从光学和光声分子影像、磁共振分子影像和正电子发射断层扫描分子影像3个方面的前沿技术和临床应用做一综述。

Abstract:With the progress of nanobiotechnology and the rise of optical imaging technology recently, molecular imaging has shown a development trend of close integration with many disciplines such as materials science, chemistry, medical physics, biomedical engineering and genomics, etc. New molecular imaging agents based on nanotechnology are developing rapidly, and nanoparticles modified with small molecules, peptides, antibodies and aptamers have been widely used in preclinical research and clinical translation. Multimodal molecular imaging technology has emerged as a key component of precision medicine, and a new wave of imaging technology upgrades can obtain more information at the tissue and molecular levels, further promoting cross-fertilization between disciplines. In this paper, we review the cutting-edge technologies and clinical applications of optical and photoacoustic molecular imaging, magnetic resonance molecular imaging, and positron emission tomography molecular imaging.

[4] Ahmed MA, Williams P. Diagnosis of vascular catastrophe using optical coherence tomography[J]. Eur Heart J, 2021. DOI:10.1093/ eurheartj/ehab194. [5] Sakai S, Sato A, Hoshi T, et al. In vivo evaluation of coronary arteritis by serial optical coherence tomography in large vessel vasculitis[J]. Eur Heart J, 2020. DOI: 10.1093/eurheartj/ehaa991. [6] Wu YL, Zeng F, Zhao YL, et al. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications[J]. Chem Soc Rev, 2021, 32. DOI: 10.1039/d1cs00358e. [7] Yang G, Huang HB, Luo HB, et al. Fiber endface photoacoustic generator for quantitative photoacoustic tomography[J]. Opt Lett, 2021, 46(11): 2706-9. doi: 10.1364/OL.426033[9] Chen J, Qi J, Chen C, et al. Tocilizumab-conjugated polymer nanoparticles for NIR-Ⅱ photoacoustic-imaging-guided therapy of rheumatoid arthritis[J]. Adv Mater, 2020, 32(37): e2003399. doi: 10.1002/adma.202003399[11] Qi S, Zhang YC, Liu GY, et al. Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-Ⅱ photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma[J]. Acta Biomater, Tang YF, Li YY, Hu XM, et al. Nanoprobes: "dual lock-and-key"-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window (adv. mater. 31/2018)[J]. Adv Mater, 2018, 30(31): 1870226. doi: 10.1002/adma.201870226[17] Wang XW, Zhong XY, Li JX, et al. Inorganic nanomaterials with rapid clearance for biomedical applications[J]. Chem Soc Rev, 2021. DOI: 10.1039/d0cs00461h. [18] Smits M. MRI biomarkers in neuro-oncology[J]. Nat Rev Neurol, 2021: 1 Liang ZY, Wang QY, Liao HW, et al. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging[J]. Nat Commun, 2021, 12: 3840. doi: 10.1038/s41467-021-24055-2[20] Fang H, Li M, Liu Q, et al. Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer[J]. Nanomicro Lett, 2020, 12(1): 62. [21] Yi ZG, Luo ZC, Barth ND, et al. In vivo tumor visualization through MRI off-on switching of NaGdF 4 – CaCO 3 nanoconjugates[J]. Adv Mater, 2019, 31(37): 1901851. doi: 10.1002/adma.201901851[23] Yan G, Zhang T, Dai Z, et al. A potential magnetic resonance imaging technique based on chemical exchange saturation transfer for in vivo γ-aminobutyric acid imaging[J]. PLoS One, 2016, 11 (10): e0163765. doi: 10.1371/journal.pone.0163765[25] Chen P, Shen Z, Wang Q, et al. Reduced cerebral glucose uptake in an Alzheimer's rat model with glucose-weighted chemical exchange saturation transfer imaging[J]. Front Aging Neurosci, 2021, 13: 618690. doi: 10.3389/fnagi.2021.618690[26] Zhang J, Yuan Y, Gao M, et al. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents[J]. Angew Chem Int Ed Engl, 2019, 58(29): 9871-5. doi: 10.1002/anie.201904722[29] Jia YL, Geng K, Cheng Y, et al. Nanomedicine particles associated with chemical exchange saturation transfer contrast agents in biomedical applications[J]. Front Chem, 2020, 8: 326. doi: 10.3389/fchem.2020.00326[30] Chen L, van Zijl PCM, Wei ZL, et al. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging[J]. NeuroImage, 2021, 236: 118071. doi: 10.1016/j.neuroimage.2021.118071[31] Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β[J]. Sci Transl Med, 2012, 4 (147): 147ra111. Nauen DW, Troncoso JC. Amyloid-beta is present in human lymph nodes and greatly enriched in those of the cervical region[J]. Alzheimer's Dement, 2021. DOI: 10.1002/alz.12385.


相关文章

专题分类