关于大学电磁学的物理论文 大学物理电磁学或电磁学论文

2023-03-09 21:55:00 来源 : haohaofanwen.com 投稿人 : admin

下面是好好范文网小编收集整理的关于大学电磁学的物理论文 大学物理电磁学或电磁学论文,仅供参考,欢迎大家阅读!

关于大学电磁学的物理论文

1.大学物理电磁学或电磁学论文

电磁学是物理学的一个分支。电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。

电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。

电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。

电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。

二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。

静磁现象和静电现象很早就受到人类注意。中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。

2.一千字左右的《电磁波对人的危害》 物理论文

电磁波对人体的危害 电磁波辐射能量较低,不会使物质发生游离现象,也不会直接破坏环境物质,但在到处充满电子讯用品器材的现代生活,其电磁干扰特性却不可掉以轻心,因为它随时可能使人面临危害的境地。

电磁波的危害长时间使用电脑之后,会感到身体疲劳、眼睛疲倦、肩痛、头痛、想睡、不安,这些都是受了电磁波的影响。电磁波还会使人的免疫机能下降、人体中的钙质减少,并引致异常生产、流产、视觉障碍、阻碍细胞分裂如癌、白血病、脑肿瘤。

等。此外,电磁波会散发出一种扰乱人体状态的正离子。

经实验研究和调查观察结果表明,电磁辐射对健康的危害是多方面的,复杂的,主要危害表现如下:1. 对中枢神经系统的危害 神经系统对电磁辐射的作用很敏感,受其低强度反复作用后,中枢神经系统机能发生改变,出现神经衰弱症候群,主要表现有头痛,头晕,无力,记忆力减退,睡眠障碍(失眠,多梦或嗜睡),白天打瞌睡,易激动,多汗,心悸,胸闷,脱发等,尤其是入睡困难,无力,多汗和记忆力减退更为突出.这些均说明大脑是抑制过程占优势.所以受害者除有上述症候群外,还表现有短时间记忆力减退,视觉运动反应时值明颢延长;手脑协调动作差,表现对数字划记速度减慢,出现错误较多. 2. 对机体免疫功能的危害使身体抵抗力下降.动物实验和对人群受辐射作用的研究和调查表明,人体的白血球吞噬细菌的百分率和吞噬的细菌数均下降.此外受电磁辐射长期作用的人,其抗体形成受到明显抑制. 3.对心血管系统的影响受电磁辐射作用的人,常发生血液动力学失调,血管通透性和张力降低.由於植物神经调节功能受到影响,人们多以心动过缓症状出现,少数呈现心动过速.受害者出现血压波动,开始升高,后又回复至正常,最后出现血压偏低;心电图出现R T 波的电压下降,这是迷走神经的过敏反应,也是心肌营养障碍的结果;P?Q间的延长,P波加宽,说明房室传导不良.此外,长期受电磁辐射作用的人,其心血管系统的疾病,会更早更易促使其发生和发展.4.对血液系统的影响在电磁辐射的作用下,周围血像可出现白血球不稳定,主要是下降倾向,白血球减少.红血球的生成受到抑制,出现网状红血球减少.对操纵雷达的人健康调查结果表明,多数人出现白血球降低.此外,当无线电波和放射线同时作用人体时,对血液系统的作用较单一因素作用可产生更明显的伤害.5.对生殖系统和遗传的影响 长期接触超短波发生器的人,可出现男人性机能下降,阳萎;女人出现月经周期紊乱.由於睾丸的血液循环不良,对电磁辐射非常敏感,精子生成受到抑制而影响生育;使卵细胞出现变性,破坏了排卵过程,而使女性失去生育能力。 高强度的电磁辐射可以产生遗传效应,使睾丸染色体出现畸变和有丝分裂异常.妊娠妇女在早期或在妊娠前,接受了短波透热疗法,结果使其子代出现先天性出生缺陷(畸形婴儿).6.对视觉系统的影响眼组织含有大量的水份,易吸收电磁辐射功率,而且眼的血流量少,故在电磁辐射作用下,眼球的温度易升高.温度升高是造成产生白内障的主要条件,温度上升导玫眼晶状体蛋白质凝固,多数学者认为,较低强度的微波长期作用,可以加速晶状体的衰老和混浊,并有可能使有色视野缩小和暗适应时间延长,造成某些视觉障碍.此外,长期低强度电磁辐射的作用,可促使视觉疲劳,眼感到不舒适和眼感乾燥等现象 7.电磁辐射的致癌和致癌作用大部份实验动物经微波作用后,可以使癌的发生率上升.一些微波生物学家的实验表明,电磁辐射会促使人体内的(遗传基因),微粒细胞染色体发生突变和有丝分裂异常,而使某些组织出现病理性增生过程,使正常细胞变为癌细胞.美国驻国外一大使馆人员长期受到微波窃听所发射的高度电磁辐射的作用,造成大使馆人员白血球数上升,癌发生率较正常人为高.又如受高功率远程微波雷达影响下的地区,经调查,当地癌患者急增.微波对人体组织的致热效应,不仅可以用来进行理疗,还可以用来治疗癌症,使癌组织中心温度上升,而破坏了癌细胞的增生. 除上述的电磁辐射对健康的危害外,它还对内分泌系统,听觉,物质代谢,组织器官的形态改变,均可产生不良影响。

〔(本文摘录自科技图书出版 环境科学基本丛书 之 环境物理 环境医学 )〕 经实验研究和调查观察结果表明,电磁辐射对健康的危害是多方面的,复杂的,主要危害表现如下:1. 对中枢神经系统的危害 神经系统对电磁辐射的作用很敏感,受其低强度反复作用后,中枢神经系统机能发生改变,出现神经衰弱症候群,主要表现有头痛,头晕,无力,记忆力减退,睡眠障碍(失眠,多梦或嗜睡),白天打瞌睡,易激动,多汗,心悸,胸闷,脱发等,尤其是入睡困难,无力,多汗和记忆力减退更为突出.这些均说明大脑是抑制过程占优势.所以受害者除有上述症候群外,还表现有短时间记忆力减退,视觉运动反应时值明颢延长;手脑协调动作差,表现对数字划记速度减慢,出现错误较多. 2. 对机体免疫功能的危害使身体抵抗力下降.动物实验和对人群受辐射作用的研究和调查表明,人体的白血球吞噬细菌的百分率和吞噬的细菌数均下降.此外受电磁辐射长。

3.帮忙找一篇跟电磁有关系的物理论文

“电磁辐射”不是一个新鲜的话题。

几年前发生在北京的百旺家苑事件是民众质疑高压线电磁辐射的典型,曾被媒体冠以“环境权民间觉醒”之称。 公众提高对自身居住环境的关注,是社会文明进步的体现。

但如何疏解因误导产生的不满情绪,正确引导公众在电磁辐射问题上去伪存真,树立科学观念,应该引起有关各方的重视。 质疑电磁辐射并非我国独有的现象。

邻近住宅的输电线路工频磁场是否会对当地居民的健康产生有害影响,已成为国际关注的热点。面对来自公众的压力,许多国家积极采取措施,对电磁辐射进行研究,向公众大力宣传科学知识,建立有效的沟通渠道。

“他山之石,可以攻玉”,其他国家的一些做法也许会给我们带来一定的启发和借鉴。 美国:研究与传播并重 作为世界上拥有最多发电装机容量的国家,美国的“电磁辐射”问题是一个社会性话题,与之相关的质疑与解释时见报端。

电磁辐射是否危及健康已引起美国国会的关注,众多机构如国家科学院(NAC)、全国研究委员会(NRC)、国家辐射防护委员会(NCRP)、全国环境卫生学会(NIEHS)和国家癌症研究所都为此做了大量工作。实际上,电磁研究已不单单是电力企业的事情,它已成为政府行为,政府用于电磁研究的投资也相当可观。

其中,影响较大的当数美国电磁场研究与公众资料传播计划(EMFRAPID)。该计划由美国国会提议,1992年得到法律确认后开始全面实施。

该计划的研究内容不仅包括输电环节,同时涉及发电和用电环节。 此项计划的工作人员非常注重与相关各方的沟通互动,积极接受由公民团体、劳工组织、电力公司、国家科学院等团体组成的国家电磁场顾问委员会(NEMFAC)所提出的建议。

该计划的工作人员还定期与美国能源部及全国环境卫生学会职员会面,向公众开放有关科学会议,计划发布的公众信息资料也要经过公民团体的审查。 美国全国环境卫生学会给国会的报告强调,目前,极低频场危害健康的可能性很小。

只有微弱的缺乏任何实验室支持的流行病学关联,对电磁场可能引起伤害提供了勉强的支持。同时,该学会不建议对电气设备采用电磁场限制标准,或将电力线路埋置于地下。

与此同时,全国环境卫生学会建议有关部门向公众提供如何减少电磁场暴露的方法,建议电力公司和公用事业部门继续关注和探索降低输配电线路电磁场的方法。该学会鼓励制造商在费用投入最小的前提下降低磁场,并认为昂贵的电气设备重新设计是不合理的。

美国的电力企业也在积极寻求公众的理解与支持。除了宣传变电站和输电线路的电磁辐射并不具有危害性外,一些企业还学习借鉴“杜邦做法”,即公司老板带头住在变电站或输电线路附近,员工的宿舍也尽量安排在变电站附近,希望以此引导公众对变电站和输电线路的电磁辐射不再惧怕。

法国:来一场“公共辩论” 作为欧洲最大的电力供应商和电力出口企业,法国电力公司也会面对电力建设需求与公众利益诉求之间的矛盾。近年来的实践证明,“公共辩论”机制为缓解类似矛盾提供了有效途径。

据法国电力公司亚太区有关人士介绍,近年来在法国,大型建设项目包括高压输电等工程,在启动前必须先过“公共辩论”这一关。 1993年,法国BILLARDON行政通报规定:法国电力公司的电力设施计划(主要指63千伏以上电网线路的更新及新建计划),都必须在公共调查程序启动之前组织公开听证会(后被“公共辩论”所取代),用于准备环境影响报告。

在“公共辩论”机制出台的过程中,“高铁事件”扮演了重要角色。1992年,法国决定建设连通地中海的高速地铁,遇到了激烈的群体性抵制活动。

这一事件促使法国政府规定,一切与国计民生关系重大的大型基础建设项目必须进行全民听证和辩论程序后才能决策。1995年,法国规定为大型辩论活动设立独立的“公众辩论全国委员会”机制。

2005年,为配套法国电力公司在弗拉芒维勒地区建设首台欧洲压水堆(EPR)核电站,将其生产的电力顺利输入电网,法国电力公司输电网公司(EDF-RTE)决定建设科当坦-梅纳(Coteniin-Maine)400千伏超高压输电(THT)架空线路送出工程项目,线路全长150千米。随即,有关方面根据法令规定,对该项目组织展开公共辩论。

公共辩论面向全民,针对法国电力公司输电网公司的工程计划,健康与环境专家、社会学家、当地农民等纷纷发表意见,参与辩论。辩论之前,法国电力公司输电网公司公布了“业主项目介绍材料”,包括该输电工程的情况介绍、对当地的意义、对环境的影响等。

最激烈的辩论集中在电磁辐射对人体健康有无影响的问题上。公共辩论委员会特别组织了专题讨论会,邀请国际知名专家到场,约600多人参加这一会议,对这些专家持完全否定与不信任态度的人士同样包括在内。

其实,法国各界对于“电磁辐射”这一问题的争论已经持续了30多年,专家、学者在流行病学方面作了大量研究,输电工程所经地区的官员们也表达了强烈的担忧,并希望有明确的答案。 公共辩论委员会从科学、审慎的角度出发,最终认为,在短暂的辩论时间里,不可能百分之百地消除疑虑。

但是,委员会认为,至少应将。

4.大学物理电磁学或电磁学论文

电磁学是物理学的一个分支。

电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。

电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。

电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。

电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。

保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。

取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。静磁现象和静电现象很早就受到人类注意。

中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。

1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。

书中他也记载了电学方面的研究。

5.求写物理研究性课题论文 生活中的电磁现象 1000字左右

生活中电磁辐射污染 论文类的 供研究者使用 生活中的电磁辐射污染及防范 【摘 要】如今我们工作、生活在 E 时代,在你每天尽情享受科技带来的便捷 和舒适时,有没有想过,在不知不觉中频率不同的电磁波,在我们周围悄无声息地 构成了一种被称作“ 电子 雾”的浓重污染源,它看不到、听不到、嗅不到、摸 不到,神不知鬼不觉地任意穿透、“切割”人的身体,如同“幽灵”一样,令人防不 胜防。

生活中的电子产品种类十分众多,与我们的生活、工作关系非常密切,我们 与它们接触的时间又比较长,因此,这些电子产品所产生的电磁辐射对人体健康 的影响问题已经越来越受到人们的重视。 那么,什么是电磁辐射污染?它对人体作 用的机理有哪些?如何防范电磁辐射污染? 【关键词】电磁辐射污染 电磁辐射污染机理 电磁辐射污染防范 1831 年英国 科学 家法拉第应用电磁感应的方法,使磁场中的导体在一定 条件下产生了感应电流。

这是 19 世纪最伟大的发现之一,随即世界上第一座发电 站的建成标志着人类迈进了电磁辐射的应用时代。一百多年前,电磁辐射已经深 入到了人类生活的方方面面,当今更是进入了一个电磁辐射的高利用时代。

不过,科学历来都是一把双刃剑,时代的进步常常是要付出一定代价的,这种 二律背反的现象已经得到了 历史 的多次验证。 人们在充分享受电磁辐射带来的 方便舒适的同时,也日渐感受到了它的负面效应。

如各类各类办公自动化设备、移动通讯设备、家用电器迅速进入我们的生活,提高了我们的工作效率,丰富了我 们的精神和物质生活。就在我们的生活前所未有的便捷的同时,我们所使用的高 科技产品所产生的电磁辐射,又成为继室内空气污染、放射性污染和噪音污染之 后的又一室内环境污染

特别是近些年来,国内外媒体上屡屡报道的有关电磁辐 射对人体有害,更是让人们感觉到了来自电磁辐射的威胁,以致于很多人一提起 它,就有一种莫名的痛恨和恐惧。 1 电磁辐射污染: 所谓电磁辐射污染是指高压电、变电站、电台、电视台、雷达站、电磁波发 射塔和电子仪器、医疗设备、自动化设备及微波炉、收音机、电视机、电脑、手 机等工作时产生的各种不同波长频率的电磁波。

人体如果长期暴露在超过安全的 电磁辐射剂量的电磁辐射下,细胞就会被杀伤或杀死。随着信息技术产品的不断 丰富,电磁辐射污染已经成为危害人们工作和生活的辐射污染的重要类型之一。

另一个方面,信息技术要依靠电磁波,而电磁波极容易被干扰和破坏,由此会带来 一些垃圾信息、有害信息的侵害,这也是电磁辐射污染的一个方面。电磁辐射会 造成所谓的“电磁污染”,人们也叫它电子“烟雾”或电子垃圾,即电磁辐射的强 度超过人体或环境所能承受的限度所产生的危害现象。

它无色、无味、无形、无 踪,无任何感觉,可穿透包括人体在内的多种物质,无处不在,被科学家称为 “电子 垃圾”或“电子辐射污染”,有专家称这是继大气污染,水污染和噪音污染的第四 污染。 2 电磁辐射对人体作用机理 人体是导体,可以吸收电磁场的能量。

在电磁场的作用下,人体的分子会发生 取向排列,在分子排列过程中相互碰撞消耗磁场能而转化为内能,引起热效应。 电 磁场强度越大,则热效应越明显;电磁振荡频率越高,热效应越明显,即电磁辐射 对人体的作用:微波>超短波>短波>中波>长波。

而且干扰人体生物电信息的传递。 科学实验已表明,电磁辐射污染对人体的危害主要为两个方面——致热作用和非 致热作用。

致热作用致热作用是指电磁波穿透生物体表层,直接对肌体内部组织 “加热” (如同微波炉加热食品一样),即在高频电磁波作用下,物质的温度会发生改变。 高 频电磁波的致热作用会对生物体产生影响,从而对人体造成严重的伤害,导致乳 腺癌、阳痿、流产、胎儿畸形等疾病。

非致热作用非致热作用主要是指电磁波对人体植物神经系统的危害,造成心 悸、脱发、心动过缓、血压降低和妇女月经失调等疾病。有一个典型的实验是这 样做的:从鸡雏、猫的体内摘取出大脑皮质,用调制后的特高频、甚高频电磁波对 其进行照射,发现有钙离子析出。

钙离子是生物体内信息传递、免疫系统工作和 细胞繁殖不可缺少的物质,它的浓度变化必然会对生物体产生影响。 3 生活中电磁辐射污染的防范 现代 生活,处处离不开与 电子 设备打交道。

能制造电磁辐射污染的污染 源无处不在,电脑、打印机、复印机、手提电话、无线电仪器等无不产生对身体 不利的电磁辐射波;与日常生活有关的如电视机、音响、洗衣机、电冰箱、空调、微波炉等均能产生各种数量不等的电磁干扰,我们如何防护呢? 生活中怎样才能防止和减少室内电磁辐射污染呢? 中国 室内装饰协会室内 环境监测中心的专家提醒大家注意以下几点: 在购买电子产品是应注意证实该产品是否已经通过了 CCC 认证(国家对电子 电磁兼容性的安全认证);尽量减少对高辐射产品的使用;尽量使用低辐射的产品, 如低辐的电视机、微波炉、电脑等;尽量使用坐机拨打电话,少用手机拨打电话。 手机接通瞬间释放的电磁辐射最大,最好在铃声响过一两秒或两次铃声之间。

6.谁帮我写篇关于电磁学的小论文啊,三页A4纸

电磁学计算方法的比较胡来平,刘占军(重庆邮电学院光电工程学院 重庆 400065) 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。

这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。

20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。

本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。

频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。

时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。

若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。

从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。

3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。

目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。

其定解问题为:应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。

②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。

④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。

如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。

对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。

在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。

如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。

这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。

传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非。

7.关于电磁发展的文章(约800字)

1879 年,亥姆霍兹在综合了当时电磁学的研究成果,特别是麦克斯韦电磁场理论的基础上,以“用实验建立电磁力和绝缘体介质极化的关系”为题,设置了柏林科学院悬赏奖。

这个问题的关键是要用实验来证明麦克斯韦的位移电流存在的重要理论。赫兹认为麦克斯韦的理论是正确的,但是如何用实验来证实电磁波的存在呢?他对这个难题进行了无数次实验,均未取得什么成效。

然而,赫兹并没有灰心,一直思索着解决这道难题的办法。 为了解决这个悬而未解的问题,赫兹除教书以外,全部时间都耗在学校实验室里。

在卡尔斯鲁厄高等技术学校的物理实验室中,有一种叫黎斯螺线管的感应线圈,这种仪器有初级和次级两个线圈,它们是相互绝缘的。在实验中,赫兹发现:若给初级线圈输入脉冲电流,次级线圈的火花隙中便有电火花发生。

这种现象立即引起了赫兹的注意,他敏锐地感到,这是一种与声共振现象相似的快速电磁共振过程。他想,电火花的往返跳跃表明在电极间建立了一个迅速变化的电场和磁场,因为根据尚未被实验证明的麦克斯韦的电磁理论,变化的场将以电磁波的形式向周围空间辐射。

赫兹断定:次级线圈中火花隙中的电火花,是因为初级线圈电磁振荡,次级线圈受到感应的结果。 为了用实验来证实麦克斯韦高深莫测的电磁场理论,验证电磁波的确存在,赫兹精心设计了一个电磁波发生器,对“电火花实验”进行了一系列深入的研究。

赫兹用两块边长16 英寸的正方形锌板,每块锌板接上一个12 英寸长的铜棒,铜棒的一端焊上一个金属球,将铜棒与感应圈的电极相连。通电时,如果使两根铜棒上的金属球靠近,便会看到有火花从一个球跳到另一个球。

这些火花表明电流在循环不息,在金属球之间产生的这种高频电火花,即电磁波,麦克斯韦的理论认为由此电磁波便会被送到空间去。赫兹为了捕捉这些电磁波,证明它确实被送到了空间,他用一根两端带有铜球的铜丝弯成环状,当作检波器。

他把这个检波器放到离电磁波发生器10 米远的地方,当电磁波发生器通电后,检波器铜丝圈两端的铜球上产生了电火花。这些火花是怎样产生的呢?赫兹认为:这便是电磁波从发射器发出后,被检波器捉住了;电磁波不仅产生了,而且传播了10 米远。

1887 年11 月5 日,赫兹将他发现电磁波的研究成果总结在《论在绝缘体中电过程引起的感应现象》一文中,寄给了亥姆霍兹,论文中用实验证明了麦克斯韦的电磁场理论。亥姆霍兹一口气读完了论文,非常高兴地立即写信给他的得意门生:“手稿收到。

好!星期四手稿交付排印。”仅过3 天,赫兹就收到了老师的这封复信。

谁也没有料想到,赫兹竟用如此简单的自制仪器验证了麦克斯韦如此深奥的电磁场理论,赫兹的论文出色地解答了1879年亥姆霍兹提出的悬赏难题,由此荣获柏林学院的科学奖。从此,电磁波的存在得到了确认,再也没有人怀疑了。

8.电磁波的应用的论文

电磁波为横波,可用于探测、定位、通信等等。

电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.首先,无线电波用于通信等,微波用于微波炉,红外线用于遥控,热成像仪,红外制导导弹等,可见光是所有生物用来观察事物的基础,紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等,X射线用于CT照相,伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等.一、不同频率范围内电磁波的应用无线电广播与电视都是利用电磁波来进行的。在无线电广播中,人们先将声音信号转变为电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。

而在另一地点,人们利用接收机接收到这些电磁波后,又将其中的电信号还原成声音信号,这就是无线广播的大致过程而在电视中,除了要象无线广播中那样处理声音信号外,还要将图象的光信号转变为电信号,然后也将这两种信号一起由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号还原成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。无线电广播利用的电磁波的频率很高,范围也非常大,而电视所利用的电磁波的频率则更高,范围也更大。

雷达是利用无线电波测定物体位置的无线电设备。电磁波如果遇到尺寸明显大于波长的障碍物就要发生反射,雷达就是利用电磁波的这个特性工作的.波长越短的电磁波,传播的直线性越好,反射性能越强,因此雷达用的是微波。

雷达的天线可以转动。它向一定的方向发射不连续的无线电波(叫做脉冲)。

每次发射的时间不超过1ms,两次发射的时间间隔约为这个时间的100倍。这样,发射出去的无线电波遇到障碍物后返回时,可以在这个时间间隔内被天线接收。

测出从发射无线电波到收到反射波的时间,就可以求得障碍物的距离,再根据发射电波的方向和仰角,便能确定障碍物的位置了。实际上,障碍物的距离等情况是由雷达的指示器直接显示出来的。

当雷达向目标发射无线电波时,在指示器的荧光屏上呈现一个尖形脉冲;在收到反射回来的无线电波时,在荧光屏上呈现第二个尖形脉冲,根据两个脉冲的间隔可以直接从荧光屏上的刻度读出障碍物的距离.现代雷达往往和计算机相连,直接对数据进行处理。利用雷达可以探测飞机、舰艇、导 弹等军事目标,还可以用来为飞机、船只导航。

在天文学上可以用雷达研究飞近地球的小行星、慧星等天体,气象台则用雷达探测台风、雷雨云。在自由空间,电磁波是沿直线传播的,而地球是圆形的,在通讯卫星的上天之前,人们要实现远距离通讯,只有靠多个地面天线作为中继站来传送无线电波。

卫星通讯使无线电通信进入了一个新的发展时期。现在,各种通讯卫星的上天,满足了人们在科学研究与应用领域越来越多的需求。

目前,中国长城工业总公司正与美国摩托罗拉公司合作,用长二丙改进型火箭以一箭双星的方式将多颗铱星送入轨道,从而实现覆盖全球的低轨道卫星无线电通讯。


相关文章

专题分类