电能表电量计算(电能计量论文范文10篇)

2024-01-20 01:40:00 来源 : haohaofanwen.com 投稿人 : admin

下面是好好范文网小编收集整理的电能表电量计算(电能计量论文范文10篇),仅供参考,欢迎大家阅读!

电能表电量计算

电能计量论文范文篇1

窃电行为是用电人员为了达到不交电费而用电的目的,采取的一种“免费”用电的非法手段。由于电能表的电能计量主要是根据电能计算方式进行计算的,主要计算因素有电压、电流、功率、时间,是一种将各种元素相结合的计算方式,任一元素的更改或者无记录,都会造成电能表计量的不准确,非法人员就是根据这种电能表的工作原理钻漏洞的。目前非法人员的主要窃电手段分为两大类:其一,在电表和回路上动手脚,使电能计量减少或者无记录;其二,在电能计量开始前的回路上窃电,使电能表不计电。其主要窃电方式分为很多种,有改变电压、电流正常回路的欠压法窃电和欠流法窃电,有改变电能表正常接线或者拆卸电表能的移相法窃电和扩差法窃电,还有私自进行线路接电的无表法窃电,以及采用高技术改变电能表编程的新技术法窃电等。窃电行为随着科技的发展和人们知识水平的提升而变得越来越多样化,窃电技术也越来越先进,严重影响到用户的合理用电和电力营销系统的正常运行,给人们的生活和社会秩序的营造进程带来很多的麻烦,电力企业急需寻求解决办法,从技术上杜绝这种不良现象的再次发生。

2供电稽查工作中电能计量技术的应用

电能计量技术是当前电力企业应用于电量稽查工作中,用来预防非法窃电,加强电能计量数据的准确性,保证用户合理用电的重要计电手段,用电能计量技术的远程控制技术和电子智能计算技术对供电系统进行时时监测和数字化计算,营造市场上良好的供电秩序。

2.1电能计量智能化,提高工作效率

在以前,供电稽查工作大多都是采用人工实地操作的方法,需要专业的工作人员到现场通过记录电能表的电量数据,然后根据电量计算公式进行电费计算,这种做法比较传统,持续时间长,工作效率低;而且由于人工操作不精密,容易在数据的记录和计算上出现误差,导致出现电能计量数据的不准确和计算错误的现象,给用户和企业双方带来不便。现在的供电稽查工作涉及范围变得更加广泛,已经不仅仅是只检测设备这么简单,还增添了电力的远程控制功能,对电力的使用情况进行时时监控,减少人员的来回奔波,大大的提高了工作效率;通过技术上的改善,保障了电能计量数据的准确性,减小误差,提高了电能数据的准确性与稳定性,促进了电力企业科技化、信息化、智能化的发展进程。

2.2防窃电等违章用电行为

电力企业对于防窃电行为的措施研究由来已久,除了安装高性能电能表、合理布置电线、加固电能表防护措施、完善电力营销系统外,电能计量技术也能够在一定程度上预防窃电等违章用电行为,对供电系统的合理运行具有重要作用。由于电能计量的数字化技术,工作人员进行电力稽查工作时能够及时发现不当用电行为,及时对违章用户进行处理,最大限度的减少电力损失;根据已掌握的用户用电情况进行电量数额控制,增加相关的电力监控设备,一旦出现特殊用电情况,就能够及时发现违章用电行为,并制定相关处罚措施进行规范管理,加大惩罚力度,将违章用电等非法行为扼杀在摇篮中,减少电力损失,规范供电秩序,为电力稽查工作提供方便。

2.3减少工作人员工作量

现在很多电力企业中,工作人员充足,但是缺乏先进的技术和设备,工作人员在进行电力稽查工作时,大多采取传统的人工抄表办法,然后进行电费计算。电能稽查工作中的数据记录环节很重要,一旦出现人工失误,相关联的电量计算也会受到影响,导致电能稽查结果的不客观、不准确。将电能计量技术应用与供电稽查工作,采用电子数据采集和智能化电量控制,保证电能数据的可靠性和稳定性,不受外界影响,并对电量进行远程控制计算,减少员工的来回奔波路程和电量计算过程,减少供电稽查工作的工作量,同样提高工作人员的工作效率。

电能计量论文范文篇2

关键词:无线抄表系统AT90S2313单片机电能计量

引言

电能表自动抄表简称ARM(AutomaticReadingMeter),是供电部门将安装在用户处的电能表所记录的用电量等数据通过遥测、传输和计算机系统汇总到营业部门,代替人工抄表及一连串后续工作。

随着经济体制改革的深入,电能计量、电费核算及收缴的及时性和准确性已成为用电企业的重要课题;而目前我国电能数据的采集基本上为手工抄表,需要抄表人员走家串户,每月或每两月抄一次,再通过微机或手工制作的电费单催缴用户电缆,存在着错抄、漏抄、估抄等问题。自动抄表系统的研制与应用是解决上述问题的有效途径之一,而无线抄表系统则是自动抄表系统中种较优的方式。该系统的实现是迈向配电自动化的第一步,并有助于提高电力系统用电管理的水平。

一、系统硬件构成

这套电能计量装置无线抄表系统包括2块SA68D11无线数传模块和1片ATMEL公司生产的AVR系列AT90S2313单片机。模块有来实现无线数据传递;单片机用来进行数据采集作一些相应的处理。系统硬件框图如图1所示。

图1中,8路脉冲输入信号来自8个单相脉冲电能表。工作时,单片机只需定时测量输入的脉冲,再根据脉冲数与用电量之间的比例关系即可得到用户的用电量。

图1中虚线框内的单片机数据采集部分是整个系统的核心部分,通过软件的编辑可实现数据采集、数据保存、数据发送和控制命令的接收以及其他数据掉电保护等重要功能。本系统采用的AT90S2313单片机构成图1中虚线框内所有功能模块。它内含2KB的FLASH存储器;128字节片内EEPROM、128字节片内RAM和片内模拟比较器;8位和16位可预分频定时器各一个;中断源11个(中断优先级已定);全双工的UART以及可编程的WatchDog定时器等。在本系统中,单片机的资源分配为:T1作为时器,实现单片机对脉冲量的定时采集。模拟比较器检测系统交换电源工作是否正常。一旦发生掉电情况,模拟比较器中断标志位就被置1,在主程序中不断检测这一位;一旦检测到该位为1,则立即将数据写入EEPROM中保存。从掉电到保存时间很短,在这段时间内靠滤波大电容储能供电。在储能放完之前,将保存数据工作完成即可。EEPROM存储器用来保存单片机所测的脉冲数和单片机的地址等一些重要装饰。WatchDog定时器防止单片机“死机”或“跑飞”。串行口UART实现单片机发射/接收模块之间的数据交换。

在本系统中,数据的无线传递是通过无线数传模块实现的。为了使模块与单片机、计算机之间的数据传送正确,必须严格按照计算机(单片机)与模块间的传输格式进行数据传送。模块的输出电平为TTL电平,它可与AT90S2313单片机直接连接。与计算机连接时间需接一个RS-232C电闰转换芯片。模块与单片机、计算机之间的通信速率为9600b/s,采用1个起始位、8个数据位、1个停止位的格式,与AT90S2313单片机的通信接口方式完全相同。计算机和模块之间的数据传输格式为:

标志字节D7H控制字节M数据或参数字节

第一个字节为标志字节,其值为十六进制数D7,作用是标志数据传送的开始。第二字节为控制字节,当第二字节小于等于48(30H)时,其值代表传送数据长度。后面字节为数据,当第二字节大于48(30H)时为控制字,后面不再跟数据和参数。模块传给计算机时带CRC校验字节防误措施。

二、系统软件设计

本系统的软件主要包括二大部分:一是数据采集部分,是以AT90S2313单片机与核心的汇编语言的设计;二是PC机通信软件的设计部分。这里要介绍AT90S2313单片机的汇编语言设计问好。其软件设计思想是采用模块化编程,即系统的总体功能由各子程序完成。主要的子程序有定时器中断、数据算是和接收发送中断服务程序等。

1.单片机初始化部分

主程序部分首先对单片机进行初始化,其包括堆栈指针设置;端口的工作方式设置;定时器的预分频系数和初值设置;串行通信的控制寄存器和波特率寄存器的设置;看门狗定时器的周期及初值设置;单片机的地址设置;开全局中断等,其流程图如图2所法。初始化子程序如下:

start:

lditmp,$d9;设置堆栈指针

outspl,tmp

clrtmp;设置B口、D口为输入且不带上拉

outddrb,tmp

outddrd,tmp

outportb,tmp

lditmp,2;设置定时器分频系数及定时器赋初值

outtimsk,tmp;定时周期为6.4ms,开定时器中断

lditmp,timerT

outtccr0,tmp

lditmp,$d8;允许接收中断和发送中断

outucr,tmp

lditmp,baud;设置波特率为9600baud

outubrr,tmp

lditmp,watchT;设置看门狗定时器的周期及初值

outwdtcr,tmp

lditmp,$0a;设置模块比较器工作方式

outacsr,tmp

ldir26,address;给单片机赋初始地址

lditmp,$2d

stx+,tmp

lditmp,$d0

stx+,tmp

lditmp,$77

stx+,tmp

lditmp,$07

stx+,tmp

lditmp,$02

stx,tmp

ldir26,figa0;清所有标志位

clrtmp

stx+,tmp

stx,tmp

sei;开全局中断

2.定时器中断服务程序

定时器中断服务程序主要是测量各电表的脉冲数。由于电表输出脉冲宽度为80ms,其误差为±20%,即最窄脉冲宽度约为64ms,最宽脉冲宽度约为96ms。因而本系统设计的定时时间为6.4ms,为了抗以免发生脉冲误计,采用了数字滤波的方法,要求脉冲输入的引脚电平连续保持10次为高电平时才计1次脉冲,避免了窄脉冲的干扰引起的误计。

3.串行通信接收和发送中断服务程序

串行通信的接收中断和发送中断服务程序主要完成单片机和上位机之间的数据交换。其中接收中断服务程序主要是接收从上位机传来的各种命令,发送中断服务程序是单片机对上位机的各种命令的响应,如上位机叫单片机发送地址等。接收和发送中断服务程序流程图如图3和图4所示。

4.数据处理子程序

数据处理子程序是软件设计中的重要部分。它通过对串行通信接收到的数据进行分析、比较、判断并转入相应的子程序。由于要实现上位机对单片机的控制,自行规定了一些控制命令。为了不与模块和计算机(单片机)之间的控制命令传输格式相冲突,自行规定的一些控制命令都采用数据传送的方式传送,有别于命令传送方式,因此开始字符小于30H。

5.片内EEPROM操作子程序

片内EEPROM操作子程序包括对EEPROM的读操作和写操作。其中读操作是在主程序初始化后进行的,写操作是在掉电时由模拟比较器产生的标志被主程序查询到而进入的。这一部分内容虽然不多,但对于数据的保存和恢复非常重要,因为系统一旦开始工作后,它所记录的数据是绝对不能丢失的。

EEWrite_seq:;对EEPROM的写操作

.defEEwtmp=r24

.defEEdwr_s=r18

.defcounter=r22

sbicEECR,EEWE

rimpEEWrite_seq

outEEAR,Eewtmp

outEEDR,Eedwr_s

sbiEECR,EEMWE

sbiEECR,EEWE

inEewtmp,EEAR

incEewtmp

ret

EERead_seq;;对EEPROM的读操作

.defEErtmp=r24

.defEEdrd_s=r0

sbicEECR,EEWE

rjmpEERead_seq

outEEAR,Eertmp

sbiEECR,EERE

inEEdrd_s,EEDR

inEErtmp,EEAR

incEErtmp

ret

值得注意的是,AT90S2313单片机的片内EEPROM被分隔为一些连续的单元。对EEPROM的读写都必须从每个单元的初始地址开始,否则不能正确完成对EEPROM的读写。因此,在主程序中要进行EEPROM的读写操作时,都是从EEPROM的00地址单元开始。

三、系统可靠性设计

无线抄表系统必须在电力系统中准确、可靠地长期运行。可靠性是系统成功的关键,因此本系统设计时着重考虑了以下方面的可靠性设计:

(1)数据传输采用CRC校验,可验出传输中的绝大部分错误;

(2)数传模块采用金属封装,抗干扰能力强;

(3)AT90S2313单片机片内带EEPROM,掉电时可以保护数据;

(4)AT90S2313单片机片内带看门狗电路,防止系统锁死。

(5)单片机所有功能模块均在芯片内,其总线不出芯片,不需外扩任何器件,提高了系统可靠性。

电能计量论文范文篇3

关键词:电能计量自动抄表信道采集终端

电能计量是现代电力营销系统中的一个重要环节,传统的电能量结算是依靠人工定期到现场抄读数据,在实时性、准确性和应用性等方面都存在不足。而用电客户不仅要求有电用,而且要求用高质量的电,享受到更好的服务。因此提高电力部门电费实时性结算水平,建立一种新型的抄表方式已成为所有电力部门的共识。再加上供电部门对防窃电技术也提出了更高的要求。

电能计量自动抄表系统是将电能计量数据自动采集、传输和处理的系统。它克服了传统人工抄表模式的低效率和不确定性,推进了电能管理现代化的发展进程。

1电能计量自动抄表系统的构成和特点

典型的电能计量自动抄表系统主要由前端采集子系统、通信子系统和中心处理子系统等三部分组成,如图1所示。

1.1前端采集子系统

按照采集数据的方式不同,电能计量自动抄表系统可分为本地自动抄表系统和远程自动抄表系统两种。

本地自动抄表系统的电能表一般加装红外转换装置,把电量转换为红外信号,抄表时操作人员到现场使用便携式抄表微型计算机,非接触性地读取数据。

远程自动抄表系统由电子式电能表或加装了光电转换器的机电脉冲式电能表构成系统的最前端,它们把用户的用电量以电脉冲的形式传递给上一级数据采集装置。目前实际应用的远程自动抄表系统大多采用两级式数据汇集结构,即由安装于用户生活小区单元的采集器收集十几到几十个电能表的读数,而安装在配电变压器下的集中器则负责定期从采集器读取数据。

1.2通信子系统

通信子系统是把数据传送到控制中心的信道。为了适应不同的环境条件以及成本要求,通信子系统的构成有多种方案。按照通信介质的不同,通信子系统主要有光纤传输、无线传输、电话线传输和低压电力线载波传输等四种。

光纤通信具有频带宽、传输速率高、传输距离远以及抗干扰性强等特点,适合上层通信网的要求。但因其安装结构受限制且成本高,故很少在自动抄表系统中使用。

无线通信适用于用户分散且范围广的场合,在某个频点上以散射通信方式进行无线通信。其优点是传输频带较宽,通信容量较大(可与几千个电能表通信),通信距离远(几十千米,也可通过中继站延伸)。目前,GPRS无线通信网络为无线抄表系统的实施提供了高效、便捷、可靠的数据通道。主要缺点是需申请频点使用权,且如果频点选择不合理,相邻信道会相互干扰。

租用电话线通信是利用电话网络,在数据的发出和接收端分别加装调制解调器。该方法的数据传输率较高且可靠性好,投资少;不足之处是线路通信时间较长(通常需几秒甚至几十秒)。

低压电力线载波通信利用低压电力线作为系统前端的数据传输信道。其基本原理是:在发送数据时,先将数据调制到高频载波上,经功率放大后耦合到电力线上。此高频信号经电力线路传输到接收方,接收机通过耦合电路将高频信号分离,滤去干扰信号后放大,再经解调电路还原成二进制数字信号。电力线载波直接利用配电网络,免去了租用线路或占用频段等问题,降低了抄表成本,有利于运营管理,发展前景十分广阔。但是,如何抑制电力线上的干扰,提高通信可靠性仍是亟待解决的问题。

1.3中心处理子系统

中心处理子系统主要由中心处理工作站以及相应的软件构成,是整个电能计量自动抄表系统的最上层,所有用户的用电信息通过信道汇集到这里,管理人员利用软件对数据进行汇总和分析,作出相应的决策。如果硬件允许,还可直接向下级集中器或电能表发出指令,从而对用户的用电行为实施控制,如停、送电远程操作。

2电能计量自动抄表技术的现状

2.1电能表

传感器、自动化仪表以及集成电路技术的发展,使得无论是机电脉冲式还是电子式电能表已能够较好地满足当今电能计量自动抄表技术的需要。预计今后相当一段时间内,电能计量自动抄表系统的终端采集装置将以机电脉冲式电能表和电子式电能表两种仪表为主。

2.2采集器和集中器

采集器和集中器是汇聚电能表电量数据的装置,由单片机、存储器和接口电路等构成,现在已经出现了较成熟的产品。

2.3通信信道

通信子系统是电能计量自动抄表技术中的关键。数据通信方式的选取要综合考虑地理环境特点、用户用电行为、技术水平、管理体制和投资成本等因素。国内外对于不同通信方式各有侧重,在西方发达国家,对于电能计量自动抄表技术的研究起步较早,电力系统包括配电网络较规范、完备,所以低压电力线载波技术被广泛应用;在我国,受条件所限,较多使用电话线通信。近来,随着对扩频技术研究的深入,低压电力线载波中干扰大的问题逐步得到解决,因此,低压电力线载波通信方式在电能计量自动抄表技术中的应用有逐步推广的趋势。

3电能计量自动抄表技术的热点和发展趋势

3.1电力线载波通信

电力线载波通信,是将信息调制为高频信号(一般为50~500kHz)并叠加在电力线路上进行通信的技术。其优势是利用电力线作为通信信道,不必另外铺设通信信道,大大节省投资,维护工作量少,可灵活实现“即插即用”。目前,国内10kV以上电压等级的高压电力线载波技术已经较成熟,但低压电力网络上的载波通信还未能达到令人满意的水平,这在一定程度上制约了电能计量自动抄表技术在我国的实际应用。

3.2无线扩频通信

扩频技术是一种无线通信方式,把发送的信息转换为数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号,以扩展信号的频谱,通过相关接收,用相同的频码序列解扩,最后经信息解调,恢复出原始信息。扩频通信距离一般可达几十千米,其最大的优点在于抗干扰能力较强,因此具有较强的安全保密性。扩频技术在电能计量自动抄表系统的典型应用方式是:采集器通过电力线载波把数据传至集中器,再由设置在集中器附近的扩频电台把数据发送给中央处理站的接收电台。

3.3复合通信

在应用于电能计量自动抄表系统中的所有通信模式中,各种通信模式都有优缺点,任何一种采用单一通信技术的方案均很难完全满足需要。为解决这类矛盾,提出了复合通信方案。

复合通信方案是在自动抄表的不同通信阶段采用不同的通信方式,组成实现电能自动抄表的复合通信网络。在数据传输量不太大、传输距离较近的底层数据采集阶段(电能表到采集器,采集器到集中器),可以采用如红外、低压电力线载波甚至点对点的通信方式;而在集中器到中央处理站段,则可采用电缆、电话线或无线通信等。选择什么样的复合方式,需根据实际情况统筹考虑。混合使用的各种通信方式之间要有很好的相容性,不能相互干扰,这其中涉及到运筹学、最优规划等方面的研究与设计。

3.4自动抄表的安全性

自动抄表的安全性主要包括自动抄表过程的安全性和中心处理子系统的计算机网络安全性。电能计量自动抄表系统的抄表过程是分散的采集器、集中器与中心处理站间交换数据的过程。通信中既要保证所抄数据的安全、可靠传输,又必须确保中心处理子系统不会受到来自传输网络的意外攻击。

中心处理子系统的安全性主要是指其包含的计算机网络安全性,而主要的安全隐患来自以下4个方面:黑客、病毒、合法人员的失误和网络系统自身的脆弱性。保护及防范的措施是综合运用密码技术、身份验证技术、访问控制技术、防火墙技术、安全内核技术、网络反病毒技术、信息泄漏防治技术、网络安全漏洞扫描技术和入侵检测技术等。

电能计量论文范文篇4

1.1电能计量信息化管理的设计原则

电能计量管理部门应建设电能计量管理高效的信息系统,并与用电营业等相关部门实现工作联网,电力部门才能实现电能计量信息化管理。其中,电能计量信息化管理系统的设计原则要满足如下四个方面:第一,电能计量信息系统在功能设计上,应保证各功能模块形成一个有机统一的整体,同时保证各功能模块的独立性,电力部门电能计量满足各业务功能的需要,各项业务处理有效实现独立性,实现连贯和统一的业务流程;第二,用电管理中,电能计量信息化管理系统是基础组成部分,还要预留数据接口为系统功能的扩展;第三,电能计量信息化管理系统的设计应以计量器具资产为辅线,以电能计量装置为主线,保证系统可以全程监控和管理整个电能计量装置的运行状况;第四,保证系统设计中各功能模块之间数据一致性好、共享性高,便于用户查询,保证系统维护简单。

1.2电能计量信息化管理的设计模式

电能计量信息化管理模式如图1所示,具体的工作原理为:整个电能计量信息化管理系统是以数据管理器的采用作为中心的,数据管理器负责管理整个系统的运行。用户通过售电系统,可以在售电系统上购电,电力公司通过互联网数据交换,通过管理系统命令将电量输入到数据管理器,然后数据管理器再将电量通过控电机柜传输到用户区,实行李振中国网湖北省电力公司孝感供电公司湖北孝感432000电能用电的自动管理。同时,电能计量信息化管理系统通过互联网,将用电信息在售电系统、管理系统和监控系统之间相互传输,最后端口为电力管理部门中相关用电管理中心,监控系统由各用电管理区放置在相应位置,电能计量进行逐层管理,便于电力管理部门信息化管理。

1.3电能计量信息化管理的功能设计

正常情况下,电力部门要实现电能计量信息化管理,电能计量信息化管理系统功能需求应满足如下四个方面:第一,使用电能计量信息化管理系统可以实现有效管理整个电能计量工作,凭借信息处理技术达到计量系统信息共享;第二,利用电能计量信息化管理系统能实现全程跟踪电能计量资产的状态,通过建设电能计量资产的各种台账,并实现电能计量信息化管理系统对计量资产流转过程的跟踪管理。另外,电能计量信息系统为了对人为因素的影响进行有效控制,需要信息系统利用口令以及权限管理等手段有效管理工作人员处理业务的权限;第三,用电业务管理的自动化操作可以利用电能计量信息化管理系统来实现,逐步取代用电业务的传统手工管理方式;第四,要求电能计量系统能方便查询计量业务进展、各种统计数据、用户的相关信息资料、计量器具的信息资料等。

2.电能计量信息化管理的主要措施

2.1建设计量信息管理系统

电量计量信息管理系统包括资产档案、运行计量装置档案、标准设备、检测数据档案等许多方面的内容。计量信息管理系统不仅具有实时抄录分析各种电量表、自动检测各种计量器等特征,还可以对系统中存在分散、混乱的抄表系统测量信息和静态测量进行技术计算,将分类为营销、管理等功能模块,将原来计量和抄表系统内的计量信息转换为动态、综合、有序的信息,实现现代化的计量管理。要充分利用计量和抄表系统功能,适应电网商业化运行的需要,核准电能计量的准确性,实时提供各类电量信息,实时查出有疑点的计量装置,对不合理用电情况进行严格查处,对在线计量装置引起的误差电量进行计算分析,能够改进计量管理,为电力营销决策提供有力依据。

2.2做好计量装置的维护

电压互感器二次电压降补偿器可以“补偿”计量TV二次回路的电压降,并且可以减少电能计量误差。同时,采用加大导线截面、电能表采用低功耗、缩短电压互感器和电能表之间的连线的有效解决方法,解决计量二次回路电压降过大的问题。在电能计量中采用电压互感器二次电压降补偿器,不但增加了计量装置的故障率,而且还影响了设备的稳定性和可靠性,甚至引起用户异议,造成不必要的争端,所以建议取消这种补偿方式。近年来,电量变送器代替电能表的现象逐渐出现,但是电量变送器因其用途、误差计算方式等方面的不同并不符合特殊的计量要求。所以,电量变送器不能代替电能表使用。

2.3优化计量工具

电能计量论文范文篇5

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。

由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。

(3)电子互感器在A/D转换的过程中存在较大的角度误差。在光电互感器对采集到的模拟量转换为数字量的A/D转换中,会带来较大的角度误差,从而对电能计量的计量准确性又带来了一定的影响。

(4)与光电互感器相匹配的电能表必须具有国家法定计量检定机构的认证。由于光电互感器的结构特殊性,必须要采用与之相匹配的电能表进行计量,原先的电能表均无法实现计量功能,为此就出现了一个新的问题,新型的电能表作为一种“新”计量工具,按照国家法规就必须有具有国家法定计量检定机构的认证,因此新型电能表的认证也是必不可少的。

电能计量论文范文篇6

[论文摘要]对数字化变电站中光电互感器的工作原理、结构上的特点和优点进行简单分析,同时阐述光电互感器的应用对电能计量方面的影响。

数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。

电能计量论文范文篇7

摘要:小水电受季节气候影响,并网、解裂次数频繁,加之计量方式不当,监督管理不够等原因,不同程度地影响了配电线路的线损,现分析如下

关键词:气候影响计量方式监督管理线损

小水电受季节气候影响,并网、解裂次数频繁,加之计量方式不当,监督管理不够等原因,不同程度地影响了配电线路的线损,现分析如下:

1影响线损的主要原因

(1)计量方式不当:

小水电并网处与该配电线路出口处各有一套计量装置,如图1所示。

(图中箭头表示电量为正时的电流方向)

如上图可见:A1为配电出口电能表抄见有功电量;

A2为小水电并网处电能表抄见有功电量;

A3为用户抄见有功电量总和(含变损)。

则该线路线损率为:

△AP%=[(A1+A2-A3)/(A1+A2)]×100%①

分析上式,当A1为负值时,上式意义不变;当A2为负值时,①式变为:

△AP%={[A1-(A2+A3)]/A1}×100%=[(A1-A2-A3)/A1]×100%②

从图①可看出,A1=B-C,A2=D-E,均为正值,则可得出实际有功线损率为:

△AP%=[(A1+A2-A3)/(B+D)]×100%③

比较①②③式,可看出分子一样,分母分别为A1+A2、A1、B+D,现列表1如下:

表1

电源出力情况

(小水电)发电时间

线损率比较

全月发电

E=0,A2=D全月间断发电

A2=D-E全月不发电

D=0,A2=-E

B=0,A1=-C①式与③式不等①式与③式不等①式与③式不等

A1=B-C①式与③式不等①式与③式不等①式与③式不等

C=0,A1=B①式与③式不等①式与③式不等①式与③式不等

从上述分析结果看出,由于计量方式不当,除水电站全月不发电和全月发电量小于用户负荷用电量时,①式与③式计算结果相等外,其余都不等于实际线损率,所以形成上述情况,是因为原计量方式(小水电并网线路出口计量和小水电站各有一套计量装置),体现不出水电站供、用和变电所的送、受电中相抵消的电量。

(2)计量装置误接线:

图2和图3是两种较明显的误接线。其中图2的水电阻的接线位置不对,加之发电值班人员的疏忽,将使水电阻(基本按满载调置)超时运行,且计量装置所计电量并未送入农网。这也是增加线损率的一个原因。

(3)计量装置配置不合理:

只考虑了发电机或变压器容量,并没有考虑在不发电时,厂用电负载远小于发电功率,电能表处于轻负载状态运行而引起负的附加误差,导致线损增加。

(4)监督、管理不力:

小水电的个别承包人不择手段、千方百计地研究窃电或增收方案,想出了专发有功或专发无功的办法,不按发电上网要求严格控制有、无功定比的规定。增加了农网无功负荷电流损失,造成了线损增加。

(5)上网计量点位置的影响:

计量点距农网配出口主干线的距离远达几百m至数km,这也是小水电对农网线损影响的原因之一。

2解决小水电对农网线损影响的措施

(1)采用正确的计量方式,合理配置计量装置:

①要在变电所有小发电站(可能引起电能表反转)的配出口和小发电站原计量方式的基础上再各加装一套计量表计,采用两套带有止逆装置的计量表计进行计量,即可达到正确计算线损的目的,同时也杜绝了电能表反转引起的计量误差。

②小水电上网宜采用的计量方式:

a.高压计量接线方式如图4。其计量装置使用高压计量箱,复比S级电流互感器、宽负载电能表。小水电受季节性变化影响较大,在停发时厂用电负荷较小,复比S级电流互感器和宽负载电能表能满足其准确计量的要求。宽负载电能表标定电流为1.5A,但其具有4倍过载能力,即达到6A电流时不超出电能表的允许误差。为减少小发电用户在任意负载下的计量误差,建议高压计量箱中的S级电流互感器变比按表2选择。

从表2可以看出,1.5(6)A的宽负载电能表规定的起动电流为0.0075A,如配备相应变比的S级电流互感器,即使在用户无任何负载时,S9以下系列变压器的空载有功损耗电流折合到互感器二次后都大于电能表的起动电流,且变压器的一次额定电流也没有超过电流互感器一次额定电流的1.2倍,可见这样配置是完全可行的。

但当发电机输出电流长期处于变压器额定电流的80%~120%时,电流互感器变比应适当增加一个档级。

b.低压计量接线方式如图5、图6。因小水电的供电单价与用电单价不同,如果小水电的用电量与供用电相抵消,就无形中减少了农电部门的收入。加之上网计量装置电流互感器变比较大,在厂用电负载很小时,难以达到电能表起动电流,为此厂区用电表计应做为直接计费计量装置,其电流互感器一次电流按实际长期用电负载选择。

c.为减小计量装置的综合误差,低压计费计量装置的电流回路必须与测量和保护回路分开;有低压电压互感器(380/100V)的计费计量装置,应改用三相380/220V(或三相380V)电能表直接计量。

图5

图6

(2)积极推广应用计量新产品:

全电子多功能电能表,集有功、无功、正反向和复费计量于一身,不但体积小、重量轻,而且杜绝了反向计量误差;复比和S级电流互感器,不但满足了用户负荷变化的需要,也将最小负荷计量的允许度降低到额定电流的1%,提高了计量精度,减少了计量误差;计量变化负荷的自动转换电路也已问世,将进一步推进电能计量的发展。有条件的地区在新建和改造小水电工程中,要大力推广新技术、应用新产品,加快电能计量标准化的步伐。

(3)加强用电营业管理,确定最佳计量点位置:

电能计量论文范文篇8

关键词:装表接电;质量管理;控制技术

电力营销服务中,装表接电工作是主要的服务项目。电能用户要能够正常用电,就要对装表接电的工作质量以有效控制,不仅关乎到电力企业是否能够安全稳定地运行,而且还关乎到电力企业能够获得的经济效益。但是,装表接电工作由于参与的人员多,而且所能够涉及到的专业技术复杂,要确保装表节点工作质量,就要实施必要的安全控制工作,以避免安全隐患存在而影响电网安全运行。

1装表接电工作中要高度重视质量控制

1.1装表接电工作中重视质量控制可以塑造良好的作业环境

装表接电工作具有一定的危险性,如果工作人员没有较高的质量控制意识,在工作中就不会对自己的行为以约束。重视装表接电工作的质量控制,首先是引导工作人员树立安全作业意识,其次是基于此而保证工作质量[1]。特别是装表接电作业以高位作业居多,如果工作人员没有按照有关规范进行操作,甚至存在违规操作的现象,就会导致作业安全系数下降,不仅威胁到工作人员的人身安全,而且还会严重影响到装表接电工作质量。装表接电工作中要高度重视质量控制,就可以为工作人员塑造良好的作业环境,让装表接电工作人员在安全稳定的环境中展开工作,从而提高工作质量和工作效率,为电能用户提供满意的服务。

1.2装表接电工作中重视

质量控制可以提高工作人员的责任意识装表接电工作中,线路短路是常见的问题,但多为工作人员操作不慎而导致的。针对装表接电工作中的各项内容强调质量控制,可以促使工作人员严格按照操作规定执行各项工作,随之工作人员的责任意识也会有所提升。具体操作中,装表接电工作人员会在日常工作中认真履行责任,在提高安全意识的同时,还会做到及时发现问题,及时采取技术措施解决。对于领导人员而言,会将质量控制工作落实到装表接电工作现场,对现场工作人员以技术指导和安全指导,以提高工作人员的责任意识,使工作人员意识到,只有在安全的工作环境中,全身心地投入到工作状态,且严格按照规定展开工作,就会保证装表接电工作质量。装表接电工作质量还与工作人员的职业操守密切相关。因此,还要做好装表接电工作质量控制的同时,强调工作人员的职业道德是必不可少的,这也是保证装表接电工作质量的关键。

2装表接电工作中所存在的质量问题

装表接电工作并不仅仅局限于安装电表,接通电源而确保电表正常运行那么简单,而是属于系统化工作,关乎到一系列的技术问题和安全问题。装表接电工作作为业扩报装中的最后一个环节,也是关键环节[2]。任何一个装表接电工作人员都要树立质量控制理念,为电能用户实施全城服务,以提高工作进度,还能够保证工作质量。在电能用户用电的过程中,并不意味着装表接电工作结束,而是要进入到监控阶段,装表接电工作人员通过客户终端就可以对电能用户的用电情况进行监督,并实施远程测量,从而为电能用户提供高质量的服务。但是,当装表接电工作落实到具体实施阶段,就会存在一些质量问题需要重点关注。

2.1装表接电工作的效率低而影响服务质量

中国的社会经济快速发展,无论是生产中,还是人们的日常生活中,用电量呈现出攀升的趋势。面对电能供不应求的局面,电力企业开始扩展电网覆盖面,给装表接电工作带来了一定的压力,不仅工作质量受到影响,工作效率也不高,电能供应质量不高。比如,供电企业在执行装表接电工作中,并没有根据电网的实际运行情况,导致装表接电设计与实际工作不相符合,使得设计方案难以落实到实际工作中。装表接电的现场操作设计到的技术复杂,且内容繁琐,同时还需要不同部门的专业技术人员合作完成。如果不同部门的专业技术人员在工作中的协调力度不够,就需要首先做好协调工作,之后才可以进入到具体操作中,由此而导致装表接电工作质量受到影响,而且难以提高工作效率[3]。此外,供电企业为了加快工程进度,会存在不按照规范操作的现象,导致装表接电工作中频频出现问题而不得不返工,由此而影响了装表接电工作质量,使得工作效率降低。

2.2由于盗窃电能问题而给装表接电工作带来困难

电能是供电企业获得经济效益的一部分。如果盗窃电能问题存在,不仅会造成供电企业的经济损失,而且还导致安全事故发生。一些电能用户为了获得更多的电能而更少地支付电费,就会采取技术手段窃电,特别是目前的窃电行为已经高科技化了,对装表接电工作造成了一定的干扰,不仅无法将电能用户的电费准确地结算出来,甚至窃电而导致的故障隐患都难以查找。一旦故障因窃电行为的存在而导致安全事故,就会影响正常供电,且会威胁到该线路电能用户的财产安全,给供电企业造成一定的经济损失。

3装表接电工作的质量控制要点

3.1装表接电工作中的接线环节要高度重

装表接电安装需要在停电环境下进行,其中装表接电工作质量需要高度重视。接线的过程中,首先将导线上铜锈清除干净。如果发现导线绝缘破裂,就要更换新的导线。如果需要破开导线的护套线,所破开的标准长度为18~21cm,否则,如果线头开拆得太短或者太长,就会对后续的装表接电工作造成影响。护套线的甲线使用颜色是一条为黑色,一条为白色,而常用护套线则使用其他的彩色。为了避免装表接电安装由于线头接触而导致短路现象,线头处要使用绝缘胶包裹起来[4]。对导线的火线以及软铜线的操作,则需要工作人员用钳子进行处理。如果工作人员在装表接电工作中需要绕线,就要在连接的位置绕6圈。接线线绕要科学合理,如果为远距离接线,线绕要超过55圈,如果为近距离接线,且线路较多,线绕就要超过40圈,以确保电网运行安全。

3.2强化控制窃电行为

窃电行为会导致电能大量损耗,对装表接电的安全性造成不良影响,同时还影响电表对电能计量的准确性。因此,要控制好装表接电的工作质量,就要做好防窃电工作。具体操作中,工作人员可以在保护柜中安装电能计量装置以及相关的设备,并对保护柜做好加固处理工作,以避免遭到恶意破坏。对于连接在电能计量装置上的电压线路,一定要留在计量箱的内部[5]。另外,还要强化对电能计量装置的巡查工作,一旦发现有窃电行为,就要及时采取必要的技术处理措施,对计量装置进行检测,以避免供电企业因此而造成巨大的经济损失。

4结语

综上所述,装表接电工作中,做好质量控制工作,就要能够充分满足电能用户的高质量用电需求,通过提高供电质量以实现正常用电。在装表接电的具体操作中,会由于服务质量不到位或者窃电行为的存在而造成一定的困难,这就需要充分掌握装表接电工作的质量控制要点,高度重视装表接电工作中的接线环节,并强化控制窃电行为,以提高装表接电的工作质量。

作者:文钦册 单位:四川明珠水利电力股份有限公司

参考文献:

[1]万义庆.对当前供电企业经营管理中装表接电工作重要性的探讨[J].城市建设,2012(33):697-698.

[2]邓坤.浅谈装表接电过程中的安全隐患及处理对策[J].科技与生活,2012(15):122.

[3]吴向茹.浅谈装表接电班组安全管理工作[J].中小企业管理与科技,2012(31):35-36.

电能计量论文范文篇9

(一)电源自身谐波。谐波在电网诞生的同时就是存在的,因为由于制造工艺的问题,电枢表面的磁感应强度分布稍稍偏离正弦波,从而使产生的电流稍微偏离正弦,这部分谐波分量只有在多路供电时才对电网产生影响。电力变压器由于其磁化曲线的非线性也产生少量谐波。

(二)非线性负载产生。谐波产生的根本原因是由于非线性负载所致。当电流流经非线性负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。变频器、软启动器、稳压电源、电子荧光灯等用电负载等都是非线性负载,是企业主要的谐波源。

1.随着科技的进步与发展,晶闸管整流在不间断电源、稳压装置、自动控制等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。就电力系统中的供电电压来说,可以认为其波形基本上是正弦波,由于晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是周期性的非正弦波,根据任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量,在电网电流中含有大量的谐波。整流装置产生的谐波是电网最大的谐波源。整流装置从电源吸收高次谐波电流,电流在电源回路引起阻抗压降,因此导致整个电网都含有高次谐波成分。

2.变频器也是企业谐波污染的另一重要因素。变频调速在企业应用较为广泛,常用于风机、水泵、皮带秤计量控制等设备中。变频器是把工频电变换成各种频率的交流电,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,整流电路将交流电转换成直流电,直流中间电路对整流电路的输出直流电压进行平滑滤波,逆变电路将直流电再逆变成交流电。由于变频器大量使用了非线性的晶闸管,对其供电电源就形成了一个典型的非线性负载。变频装置由于采用了相位控制,是以脉动的方式从电网吸收电流,脉动电流导致电网电压畸变使其含有谐波成份。随着变频调速的发展,对电网造成的谐波污染也越来越严重。

3.软启动器也造成了谐波污染。大功率设备如风机、压缩机的起停都采用了软启动器,因为软启动器采用三对反并联的晶闸管实现交流调压,由于晶闸管是典型的非线性器件,因此在使用过程中也会产生大量的谐波,对设备的稳定运行及电网造成了不良影响。

4.照明系统也产生谐波。目前企业广泛使用的荧光灯、节能灯、气体放电灯等都属于非线性负载,在节能的同时也给电网带来了大量的谐波。

二、谐波造成的危害

在谐波源设备集中使用的配电区域,谐波污染相当严重,电源功效明显下降。谐波对电力系统设备和负载的影响,基本分为两方面:(1)热应力;(2)负载损坏。谐波会增加设备的损耗而加剧热应力。电压畸变而导致电压峰值增大,可能导致电缆绝缘击穿或设备损坏。

1.所有接于电网中的设备的损耗都会增加,温升增加。谐波对电机的影响除引起附加损耗,还会产生机械振动、噪声和过电压,导致电机转矩降低,过热甚至烧毁。

2.由于谐波的频率较高,谐波源的谐波电流流入变压器时增加了变压器的铜损耗和铁损耗,导致变压器容量减小,同时随着谐波频率的增高电流集肤效应更加严重,铁损耗也更大从而引起变压器局部过热,缩短使用寿命。

3.谐波能引起补偿用电力电容器过热、过压,谐波电压使电容器产生额外的功率损耗,并联电容器其容抗随着谐波频率增大而减少,产生过电流,加速绝缘老化进程,增加绝缘击穿故障。同时如果电容与电路的电感配合不当,容易在某个谐波频率附近产生谐振,从而导致电网电压进一步畸变。

4.谐波会影响互感器的计量精度。谐波源将其吸收的一部分电网电能转变为谐波发送到电网中去,因此电能表会将谐波能量当作发电来进行计算,从而导致计量误差,增加企业的额外费用。

5.精密电子设备会被严重干扰,导致不能正常工作,甚至烧毁。整流器在换相期间电流波形发生急剧变化,该换相电流会在正常供电电压中注入一个脉冲电压,该脉冲电压所包含的谐波频率较高,因而会引起电磁干扰,对通信线路、通信设备会产生很大的影响。

6.由于继电保护机构是根据工频正弦波的变化规律作为动作激励设计的,当波形畸变严重时各种保护装置和自动控制装置的动作都会受到影响,造成继电保护装置与自动控制装置的误动作或拒动作,影响企业的自动化生产。如果零序三次谐波电流过大,可能引起接地保护装置误动作。

三、谐波治理的措施

电力消费的趋势是高效率用电与高质量用电相接合。进行谐波治理,提高电力品质是第一位的,其次是节能。谐波治理是个综合治理过程,一方面应从源头抓起,加强设备的管理防止谐波的产生,更重要的一方面是提高认识,积极进行谐波治理,防止灾害产生。目前国内一些企业已开始重视谐波的污染,取得了节能和提高电网品质的双重效果。

解决电力电子装置和其它谐波源污染问题的基本思路有两条:一是装设谐波补偿装置,即采用LC组成的无源调谐滤波器;二是对电力电子装置本身进行改造,改进整流装置,采用多相脉冲整流使其尽量不产生谐波,由于其电流电压同相位,称高功率因数整流器或高功率因数变流器。因为谐波补偿装置既可补偿谐波,又可提高电网的功率因数,而且结构简单,因此一直广泛使用。其缺点是只能补偿固定频率的谐波,其补偿特性也受电网感抗的制约,补偿效果也不理想,但仍是补偿谐波的主要手段。

目前,谐波抑制的一个重要趋势是采用有源电力滤波器。其基本原理是实时监测电网中电流,快速分离出谐波电流分量,发出控制指令,实时产生大小相等方向相反的补偿电流注入电网中,实现瞬时滤除谐波电流。这种滤波器能对频率和幅值都变化的谐波电流进行跟踪补偿,其运行不受系统的影响,也不会产生谐波放大,同时可补偿无功功率,提高功率因数是一种较先进的谐波抑制技术。但由于其造价较高,只适用于小容量谐波补偿。

四、结束语

随着企业的技术改造及设备升级换代,非线性电力设备愈加广泛应用,由此导致电力系统中谐波问题越来越严重,一方面造成了电力设备的损坏,加速绝缘老化,诱发火灾等安全事故,另一方面也影响了计算机、可编程控制器等自动化控制设备正常工作,直接扰乱了人们正常的生产、生活。本着谁污染,谁治理的原则企业应加大投入,合理用电,抑制电网污染,使电网中其他用户使用到清洁的电能,肩负起企业应担负的社会责任。

参考文献:

[1]王兆安、黄俊,电力电子技术[M].北京:机械工业出版社,2003.

[2]宋文南、刘宝仁,电力系统谐波分析[M].北京:水利电力出版社,1995.

电能计量论文范文篇10

(二)非线性负载产生。谐波产生的根本原因是由于非线性负载所致。当电流流经非线性负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。变频器、软启动器、稳压电源、电子荧光灯等用电负载等都是非线性负载,是企业主要的谐波源。

1.随着科技的进步与发展,晶闸管整流在不间断电源、稳压装置、自动控制等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。就电力系统中的供电电压来说,可以认为其波形基本上是正弦波,由于晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是周期性的非正弦波,根据任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量,在电网电流中含有大量的谐波。整流装置产生的谐波是电网最大的谐波源。整流装置从电源吸收高次谐波电流,电流在电源回路引起阻抗压降,因此导致整个电网都含有高次谐波成分。

2.变频器也是企业谐波污染的另一重要因素。变频调速在企业应用较为广泛,常用于风机、水泵、皮带秤计量控制等设备中。变频器是把工频电变换成各种频率的交流电,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,整流电路将交流电转换成直流电,直流中间电路对整流电路的输出直流电压进行平滑滤波,逆变电路将直流电再逆变成交流电。由于变频器大量使用了非线性的晶闸管,对其供电电源就形成了一个典型的非线性负载。变频装置由于采用了相位控制,是以脉动的方式从电网吸收电流,脉动电流导致电网电压畸变使其含有谐波成份。随着变频调速的发展,对电网造成的谐波污染也越来越严重。

3.软启动器也造成了谐波污染。大功率设备如风机、压缩机的起停都采用了软启动器,因为软启动器采用三对反并联的晶闸管实现交流调压,由于晶闸管是典型的非线性器件,因此在使用过程中也会产生大量的谐波,对设备的稳定运行及电网造成了不良影响。

4.照明系统也产生谐波。目前企业广泛使用的荧光灯、节能灯、气体放电灯等都属于非线性负载,在节能的同时也给电网带来了大量的谐波。

二、谐波造成的危害

在谐波源设备集中使用的配电区域,谐波污染相当严重,电源功效明显下降。谐波对电力系统设备和负载的影响,基本分为两方面:(1)热应力;(2)负载损坏。谐波会增加设备的损耗而加剧热应力。电压畸变而导致电压峰值增大,可能导致电缆绝缘击穿或设备损坏。

1.所有接于电网中的设备的损耗都会增加,温升增加。谐波对电机的影响除引起附加损耗,还会产生机械振动、噪声和过电压,导致电机转矩降低,过热甚至烧毁。

2.由于谐波的频率较高,谐波源的谐波电流流入变压器时增加了变压器的铜损耗和铁损耗,导致变压器容量减小,同时随着谐波频率的增高电流集肤效应更加严重,铁损耗也更大从而引起变压器局部过热,缩短使用寿命。3.谐波能引起补偿用电力电容器过热、过压,谐波电压使电容器产生额外的功率损耗,并联电容器其容抗随着谐波频率增大而减少,产生过电流,加速绝缘老化进程,增加绝缘击穿故障。同时如果电容与电路的电感配合不当,容易在某个谐波频率附近产生谐振,从而导致电网电压进一步畸变。

4.谐波会影响互感器的计量精度。谐波源将其吸收的一部分电网电能转变为谐波发送到电网中去,因此电能表会将谐波能量当作发电来进行计算,从而导致计量误差,增加企业的额外费用。

5.精密电子设备会被严重干扰,导致不能正常工作,甚至烧毁。整流器在换相期间电流波形发生急剧变化,该换相电流会在正常供电电压中注入一个脉冲电压,该脉冲电压所包含的谐波频率较高,因而会引起电磁干扰,对通信线路、通信设备会产生很大的影响。

6.由于继电保护机构是根据工频正弦波的变化规律作为动作激励设计的,当波形畸变严重时各种保护装置和自动控制装置的动作都会受到影响,造成继电保护装置与自动控制装置的误动作或拒动作,影响企业的自动化生产。如果零序三次谐波电流过大,可能引起接地保护装置误动作。

三、谐波治理的措施

电力消费的趋势是高效率用电与高质量用电相接合。进行谐波治理,提高电力品质是第一位的,其次是节能。谐波治理是个综合治理过程,一方面应从源头抓起,加强设备的管理防止谐波的产生,更重要的一方面是提高认识,积极进行谐波治理,防止灾害产生。目前国内一些企业已开始重视谐波的污染,取得了节能和提高电网品质的双重效果。

解决电力电子装置和其它谐波源污染问题的基本思路有两条:一是装设谐波补偿装置,即采用LC组成的无源调谐滤波器;二是对电力电子装置本身进行改造,改进整流装置,采用多相脉冲整流使其尽量不产生谐波,由于其电流电压同相位,称高功率因数整流器或高功率因数变流器。因为谐波补偿装置既可补偿谐波,又可提高电网的功率因数,而且结构简单,因此一直广泛使用。其缺点是只能补偿固定频率的谐波,其补偿特性也受电网感抗的制约,补偿效果也不理想,但仍是补偿谐波的主要手段。

目前,谐波抑制的一个重要趋势是采用有源电力滤波器。其基本原理是实时监测电网中电流,快速分离出谐波电流分量,发出控制指令,实时产生大小相等方向相反的补偿电流注入电网中,实现瞬时滤除谐波电流。这种滤波器能对频率和幅值都变化的谐波电流进行跟踪补偿,其运行不受系统的影响,也不会产生谐波放大,同时可补偿无功功率,提高功率因数是一种较先进的谐波抑制技术。但由于其造价较高,只适用于小容量谐波补偿。

四、结束语

随着企业的技术改造及设备升级换代,非线性电力设备愈加广泛应用,由此导致电力系统中谐波问题越来越严重,一方面造成了电力设备的损坏,加速绝缘老化,诱发火灾等安全事故,另一方面也影响了计算机、可编程控制器等自动化控制设备正常工作,直接扰乱了人们正常的生产、生活。本着谁污染,谁治理的原则企业应加大投入,合理用电,抑制电网污染,使电网中其他用户使用到清洁的电能,肩负起企业应担负的社会责任。

[论文关键词]谐波电网整流治理

[论文摘要]简要分析企业谐波的来源及危害,提出治理谐波的初步建议及措施。

一、企业谐波产生的原因


相关文章

专题分类