概率学 英文(概率论 英文表达)
下面是好好范文网小编收集整理的概率学 英文(概率论 英文表达),仅供参考,欢迎大家阅读!
n种可能结果:has n possible outcomes
总共有r种可能性:overall there are r possibilities for the whole experiment
关于。。。的假设:assumptions about。。
在。。的假设下:under various assumptions
如何收集样本:how the samples are collected
n中采样k个:gives the number of possible samples of size k out of a population of size n
有序,无序:order matters,not matter
有放回,无放回:with replacement,without replacement
如果所有的结果是等可能的,则事件A发生的概率为:If all outcomes are equally likely, the probability of an event A happening is.
A是否发生与B是否发生无关:whether A occurred gives no information about whether B occurred
独立事件:independent events
条件独立:conditional independence
A与B独立当且仅当下面等价命题成立:A and B are independent if and only if one of the following equivalent statements holds.
A与B在C下是条件独立的:A and B are conditionally independent given C
条件独立并不意味着独立:conditional independence does not imply independence
并,交,补:union,intersection,complements
德摩根定律:De Morgan's Laws,将并(交)的计算转化为交(并)的等式:A identity that can make caculating probabilities of unions easier by relating them to intersections, and vice versa.
辛普森悖论:Simpson's Paradox
全概率定理:Law of Total Probability
贝叶斯法则:Bayes' Rule
联合概率,边际概率,条件概率:joint probability, marginal probability, conditional probability
所有适用于概率的定理也适用于条件概率:Any theorem that holds for probability also holds for conditional probability
样本空间的一个分割:a partition of the sample space
他们是不相交的:they are disjoint
他们的并是整个样本空间:their union is the entir sample space
特例:special case
我们还可以写成:we can also write
A的后验是似然比乘先验:The posterior odds of A are the likelihood ratio times the prior odds.
概率质量函数:probability mass function
概率密度函数:probability density function
累积分布函数:cumulative distribution function
给定一个离散变量在取得某一值的概率:gives the probability that a discrete random variable takes on the value x.
a 满足:a satisfies
一个随机变量小于等于x:a random variable is less than or equal to x.
CDF是递增的,右连续的函数,且:CDF is an increasing, right-continuous function with...
一个与另一个无关:one gives no information about the other.
期望:expected value,mean,expectation,average
加权平均:weighted average
正式的,公式化的,数学上的,更一般地:more formally,mathematically, more generally
常数:constants
相同的分布意味着相同的均值:same distribution means same mean
在事件A下:conditioned on event A
如果事件发生,指示为1,否则为0:if the event occurs, the indicator is 1; otherwise it is 0.
在一个区间:in an interval
差:difference
。。。的导数:the derivative of ...
非负且和为1:A PDF is nonnegative and integrates to 1.
依据微积分的基本定理:by the fundamental theorem of calculus
随机变量在一定区间内的值:CRV takes on a value in an interval
将这一区间上的PDF累积:integrate the PDF over that interval
累加x乘PMF(离散):sum x times the PMF
累加x乘PDF(连续):integrate x times the PDF
X的期望定义如下:the expected value of X is defined this way:
也是:is also
万流归宗:universality of Uniform (plug a CRV into its own CDF, get a Uniform(0, 1))
无意识统计学家定律:The Law of Unconscious Statistician
将x替换成X:plug X into x
让X的均值为mu,标准差为sigma:Let X have mean mu and standard deviation sigma.
均值,方差,偏差,峰值:mean,variance,skewness,kurtosis
泰勒展开式:Taylor expansion
他们分布相同:They are distributed the same
之和,之积:the sum of 。。 the product of。。
在离散/连续情况:in the discrete/continuous case
联合分布,条件分布,边际分布:joint distribution, conditional..., maginal ...
当且仅当下列条件满足:if and only if any of the following conditions holds
表示:denote
与。。相似:be analogous to ..
。。的近似:the analog of ...
属于-1,1:between-1 and 1
相反情况不一定对:the converse is not necessarily right
X,Y是独立同分布的:X, Y are identically distributed
对于任意常数a,b且a,b补位零:for any constants a, b with a and b nonzero
位置不变的,尺度不变的:location-invariant, scale-invariant
函数g是可微分的,严格递增的:the function g is differentiable and strictly increasing(decreasing)
雅克比,雅克比矩阵:Jacobian, Jacobian matrix
矩阵的行列式:the determinant of the matrix/ matrix's determinant
卷积积分:convolution integral
两个独立随机变量X,Y之和:the sum of two independent CRVs X and Y
独立同分布:i.i.d.
泊松过程:Poisson Process
每单位时间x到达:x arrivals per unit time
在长度为t的时间间隔内:in a time interval of length t
不相交的时间间隔:disjoint time interval
二元性,对偶性:duality
顺序统计量:order statistics
将他们从最小到最大排列:arrange them from smallest to largest
10次独立伯努利实验:10 independent Bernoulli trials
假设:given that
无记忆性属性:memoryless property
在前三次实验中:among the first 3 trails
亚当定律:Adam's Law a.k.a. Law of Total Expectation
Eve's Law: a.k.a. Law of Total Variance
大数定律:Law of Large Numbers
中心极限定理:Central Limit Theorem
样本均值:sample mean
收敛至:converge to。。
近似分布的:approximately distributed
换句话说:in other words
X is distributed 。。
连续分布:continuous distribution
均匀分布:Uniform Distribution
指数分布: Exponential Distribution
gamma分布:Gamma Distribution
β分布:Beta distribution
二项分布的共轭先验:conjugate prior of Binomial
卡方分布:Chi-Square distribution
离散分布:discrete distribution
二项分布:Binomial
伯努利分布:Bernoulli..
几何分布:Geometric..
一次成功分布:First Success..
负二项分布:Negative Binomial ..
超几何分布:Hypergemetric ..
泊松分布:Poisson ..
多元分布:multivariant..
多项式分布:Multinomial
多元高斯分布:multivariant normal ...
多元均匀分布:multivariant uniform...
公式:formulas
几何级数、等比级数:geometric series
积分:integrals
调和:Harmonic
欧拉逼近:Euler's approximation
阶乘的Stirling逼近:Stirling's approximation