初等变换解矩阵方程值会变吗
下面是好好范文网小编收集整理的初等变换解矩阵方程值会变吗,仅供参考,欢迎大家阅读!
用初等变换解矩阵方程AX=B,其中A=left( begin{array}{ccc} 1 & 1 & -1 0 & 2 & -5 1 & 0 & 1 end{array} right),B=left( begin{array}{c} 1 2 3 end{array} right)
解:仅作初等行变换,得
begin{split} left( begin{array}{ccc} A & {vdots} & B \ end{array} right)=&left( begin{array}{cccc} 1 & 1 & -1 & 1 \ 0 & 2 & -5 & 2 \ 1 & 0 & 1 & 3 \ end{array} right)\ &xrightarrow{mbox{①$times$(-1)+③}} left( begin{array}{cccc} 1 & 1 & -1 & 1 \ 0 & 2 & -5 & 2 \ 0 & -1 & 2 & 2 \ end{array} right)\ &xrightarrow{mbox{②$times(frac{1}{2})$+③}} left( begin{array}{cccc} 1 & 1 & -1 & 1 \ 0 & 2 & -5 & 2 \ 0 & 0 & -frac{1}{2} & 3 \ end{array} right)\ &xrightarrow{mbox{③$times$(-2)}} left( begin{array}{cccc} 1 & 1 & -1 & 1 \ 0 & 2 & -5 & 2 \ 0 & 0 & 1 & -6 \ end{array} right)\ &xrightarrow[text{③}times1+text{②}]{mbox{③$times$(5)+②}} left( begin{array}{cccc} 1 & 1 & 0 & -5 \ 0 & 2 & 0 & -28 \ 0 & 0 & 1 & -6 \ end{array} right)\ &xrightarrow{mbox{②$timesfrac{1}{2}$}} left( begin{array}{cccc} 1 & 1 & 0 & -5 \ 0 & 1 & 0 & -14 \ 0 & 0 & 1 & -6 \ end{array} right)\ &xrightarrow{mbox{②$times$(-1)+①}} left( begin{array}{cccc} 1 & 0 & 0 & 9 \ 0 & 1 & 0 & -14 \ 0 & 0 & 1 & -6 \ end{array} right). end{split} \
因此方程的解为X=left( begin{array}{c} 9 \ -14 \ -6 \ end{array} right).\
注记1: 初等(行)变换法求矩阵方程AX=B之原理
如果A可逆,则X=A^{-1}B,且A^{-1}也可逆. 根据定理,存在初等矩阵G_1,G_2,cdots,G_k,使
A^{-1}=G_1G_2cdots G_k, \
因此
A^{-1}A=G_1G_2cdots G_kA, \
即
{I=G_1G_2cdots G_kA},~~~~~~~(1) \ {A^{-1}B=G_1G_2cdots G_kB}.(2) \
式(1)表示对A施以若干次初等行变换化为I;
式(2)表示对B施以同样的初等行变换化为A^{-1}B.
注记2: 初等(行)变换法求矩阵方程AX=B之方法
(1). 作一个ntimes 2n的分块矩阵left( begin{array}{ccc} A & {vdots} &B \ end{array} right);
(2). 然后对此矩阵施以仅限于行的初等变换;
(3). 当子块A化为I的同时,子块B化为A^{-1}B,即
left( begin{array}{ccc} A & {vdots} &B \ end{array} right)xrightarrow{mbox{初等行变换}} left( begin{array}{ccc} I & {vdots} &A^{-1}B \ end{array} right). \